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Frailty is a multifaceted clinical state associated with accelerated aging

and adverse health outcomes. Informed etiological models of frailty hold
promise for producing widespread health improvements across the aging
population. Frailty is currently measured using aggregate scores, which
obscure etiological pathways that are only relevant to subcomponents of
frailty. Here we perform a multivariate genome-wide association study of the
latent genetic architecture between 30 frailty deficits, which identifies 408
genomicrisk loci. Our modelincludes a general factor of genetic overlap
across all deficits, plus six new factors indexing a shared genetic signal
across specific groups of deficits. We demonstrate the added clinical and
etiological value of the six factors, including predicting frailty in external
datasets, highlighting divergent genetic correlations with clinically relevant
outcomes and uncovering unique underlying biology linked to aging. We
show that nuanced models of frailty are key to understanding its causes and
how it relates to worse health.

Frailty is acomplex clinical state that affects more than 40% of adults
aged over 65 years'. It is defined as a state of progressive, multisystem
physiological decline that reduces anindividual’s ability to withstand
external stressors’. This deterioration can lead to both physical and
mental impairments and is strongly associated with adverse health
outcomes, including earlier mortality® and increased levels of disabil-
ity and hospitalization®. Global population aging means that frailty
represents a growing public health concern®. Family-based studies
indicate a substantial genetic component to frailty, with heritability
estimates of -45% (ref. 5). Therefore, genetic methods offer a promising
tooltobetter understand the risk pathways to this critical health state.
Nevertheless, the etiology of frailty is largely unknown, limiting our
potential to identify effective therapeutic or preventive treatments.

We hypothesized that what has limited our etiological understanding
isthat we have traditionally only considered aggregate measurements
of frailty in genetic studies.

The two most common methods for measuring frailty are the
Frailty Index (FI) and the Fried Frailty Phenotype (FP)®". The Fl quanti-
fies frailty by calculating the proportion of ‘deficits’ that are present
inanindividual from a set of 30 or more phenotypes associated with
poor healthoutcomesinolder adults®. The FP uses an aggregate score
across five physical frailty deficits (weight loss, weakness, exhaustion,
slowwalking speed and physical inactivity), where the presence of three
or more of these deficits indicates frailty’. Although the FP has been
widely reportedinlarge samples, itisintended to capture pathways of
physical frailty and may not provide sufficient information to assess
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Fig. 1| Path diagram of the standardized results for our bifactor model of
frailty. All 30 frailty deficits load onto the general factor of frailty (large oval),
whichis orthogonal to factors 1-6 (that is, residual factors). The small circles
represent the 30 measured frailty indicators (that is, genetic variance captured
inthe univariate GWAS for that phenotype), whereas the medium-size ovals
represent latent factors (that is, unmeasured constructs representing genetic
overlap (g) between the indicators that load onto them). Single-headed arrows
represent a directional genetic correlation between alatent factorand an
indicator (thatis, factor loadings), whereas curved double-headed arrows
representinter-factor correlations between factors 1to 6; thess.e. of the
correlation coefficientsis reported in the parentheses. ASI, pulse wave arterial
stiffness index; BFP, body fat percentage; BMR, basal metabolic rate; CIG,
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number of cigarettes smoked per day; CON, unable to confide; CP, chest pain;
DIS, long-standingillness, disability or infirmity; EYE, eye disorder or problem;
FALL, number of falls in past year; FIN, financial difficulties; FRA, fracture in last
Syears; GF, low fluid intelligence score; HGS, low hand grip strength; HL, age-
related hearing loss; ILL, number of non-cancer illnesses; INS, insomnia; LON,
loneliness or isolation; LPA, physical inactivity; LSA, low social or leisure activity;
LWS, not living with spouse or partner; MAP, mean arterial pressure; MDD,
major depressive disorder; MOT, feelings of unenthusiasm or disinterest; OH,
poor oral health; OHR, poorer overall health rating; PAIN, pain experienced in
the past month; SOB, shortness of breath when walking on flat ground; TIR,
tiredness or lethargy; WHZ, wheezing or whistling in chest in the past year;

WP, slow walking pace.

the more nuanced subgroupings that may occurin the broader frailty
construct®. By contrast, the deficits that form the Flspan many levels of
functional, psychological and social aspects of health, allowing frailty
tobe measured across abroad spectrum of traits. These Fl deficits are
heterogeneous and vary in their underlying etiology.

Phenotypic work clearly indicates that the deficits included in
the Fl are not always strongly correlated and are driven by diverse
biological mechanisms’™. Therefore, their combination into a sin-
gle aggregate score is likely to obscure causal pathways of frailty.
For example, previous work that applied principal component (PC)
analysis to phenotypic data of Fl deficits demonstrated that addi-
tional informative variance associated with frailty was captured
when three clusters were modeled instead of one cluster'. Informa-
tion that is lost through aggregation could be identified by a more
detailed genetic analysis. Recent advances in multivariate genomics,
such as the development of genomic structural equation modeling
(SEM)®, offer the opportunity to model the genetic basis of frailty at
amultidimensional level.

We used genomic SEM to identify new groupings of genetic over-
lap between 30 frailty deficits using publicly available genome-wide
association study (GWAS) summary statistics. Weidentified 7 distinct
latent factors underpinning frailty, which displayed unique genetic
overlap with clinically relevant health outcomes and were defined
by divergent sets of genomic risk loci and biological pathways, which
provided empirical support for most of the 12 hallmarks of aging'. In
combination, these latent constructs yielded enhanced prediction
of frailty status in external cohorts and a dramatic improvement in
genomiclocus discovery compared to aggregate measures.

Results

Multivariate genetic architecture of frailty

After careful quality control and selection of frailty deficits from an
initial pool of 52 traits (Methods and Supplementary Note), we used
genomic SEM to model the genome-wide genetic overlap from GWAS
datafor 30 frailty deficits” ™ (Fig.1and Supplementary Tables1and 2).
We provide a detailed explanation of the reasons for the removal of
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22 deficits in the Supplementary Note. As genomic SEM can model
genetic overlap across participant samples with varying and unknown
levels of participant sample overlap, including even mutually exclu-
sive participant samples, this allowed us to bring together the most
well-powered genomic studies currently available for the 30 frailty
deficits and produce estimates with the highest possible precision.
Using acombination of exploratory and confirmatory factor analysis
(CFA) (Methods), this modeling procedure yielded a bifactor model
that provided a good fit to the data (comparative fitindex (CFI) = 0.93;
standardized root meansquared residual (SRMR) = 0.07; Fig.1and Sup-
plementary Table 3). This modelincluded a general factor thatindexed
geneticoverlap across all 30 deficits; therefore, it is conceptually similar
to prior aggregate measures of frailty. Half of the frailty deficits only
loaded onthe general factor, indicating that the frailty-relevant genetic
variance for these deficits was sufficiently captured by asingle aggre-
gate factor. The fact that these deficits only loaded on the general fac-
toris conceptually consistent with the broad psychological processes
(for example, insomnia, lack of motivation or apathy, loneliness) and
general aging-related outcomes (for example, age-related hearingloss,
wheezing, pain) that they surveyed.

In addition, the model produced six residual group factors that
were orthogonal (that is, uncorrelated) to the general factor, which
were defined according to additional genetic overlap in subsets of
frailty deficits. These six factors captured distinct, albeit intercor-
related, frailty pathways related to limited social support (factor 1),
unhealthy lifestyle (factor 2), multimorbidity (factor 3), metabolic
problems (factor4), poorer cognition (factor 5) and disability (factor 6).
We named these residual latent factors according to the frailty deficits
thatloaded onto themto provide a preliminary interpretation of what
eachlatent factor mightbe representing (see the Supplementary Note
foradescriptionofthis factor-naming procedure). These should not be
interpreted as definitive descriptions of the pathways underlying them
because there may be additional pathways related to that label that
are captured by the general factor of frailty or by the unique (residual)
variances of the individual frailty deficits.

Our remaining analyses sought to explore the risk pathways under-
pinning these six residual factors and evaluate their divergent valid-
ity and clinical utility by examining their ability to uniquely capture
frailty-relevant pathways at increasingly granular levels of biological
analysis.

Genetic overlap between frailty and aging-related outcomes
To validate whether the latent factors in the bifactor model reflected
different aspects of frailty, we measured the level of genetic correla-
tion (r,) between each of the latent factors and 52 aging-related health
outcomes and established frailty measures (Fig. 2 and Supplementary
Tables 4 and 5). All Pvalues were adjusted using false discovery rate
(FDR) correction to account for multiple testing (herein provided
as g-values). The general factor displayed highly positive genetic
correlations with the FI (r, = 0.93,s.e. =0.02, g = 9.1 10*®) and FP
(r;=0.83(0.02), g =9.1x107%), indicating that the general factor
closely approximates both of these frailty phenotypes, in line with
expectations, given that this latent factor represents genetic overlap
between all 30 included deficits. These findings were corroborated
by the fact that all the latent factors except for factor 1 (limited social
support) were associated with shorter parental lifespan (r,<-0.31,
q<3.2x107%), reduced longevity (r,< -0.21, ¢ < 0.01), increased risk of
common aging-related infections (r,> 0.22, g < 0.01), hospitalization
because of infection (r, > 0.15, g < 0.008) and heart failure (r,> 0.15,
g <0.005), all of which reflect key clinical correlates of frailty.
Importantly, our findings support the inclusion of additional
subgroups when measuring frailty accumulation by highlighting
divergent genetic correlations with aging-related health outcomes.
For example, factor 5 (poorer cognition) was the only latent factor to
demonstrate positive genetic correlations with Alzheimer’s disease

(ry=0.32,s.e.=0.07, g =2.26 x 10~°) and amyotrophic lateral sclero-
sis (r,= 0.38 (0.06), ¢ =1.07 x 10°®). Factor 5 also captured genetic
varianceassociated with smaller gray matter volume (r,=-0.34 (0.05),
g=9.53x107") and lacunar stroke (r,= 0.25 (0.09), g = 9.80 x107). By
contrast, factor 2 (unhealthy lifestyle) demonstrated genetic correla-
tions with brain-related vascular changes, including increased white
matter hyperintensities (r,= 0.21(0.09), g = 0.04) and resting state
fluctuation amplitudes (r,=0.19 (0.08), g = 0.03), whereas factor 3
(multimorbidity) was correlated with ischemic and lacunar stroke
(r,=0.45(0.05),g=6.21x10"*and r,= 0.38(0.09),g=3.00 x107%), but
not cerebrovascular markers. Finally, all the latent frailty factors dis-
played distinct patterns of genetic correlations with routinely collected
blood and urinary biomarkers (Fig. 2), which may represent potential
endophenotype profiles for these frailty subgroups. By definition, the
identified relationships areindependent of shared risk pathways cap-
tured by the general factor of frailty. It follows that our model of frailty
has potential clinical utility for targeted prevention and therapeutic
intervention in patients who present with elevated risk in a subgroup
of frailty deficits.

Multivariate GWAS identifies 408 risk loci for frailty

We subsequently performed a multivariate GWAS of our frailty bifac-
tor model using genomic SEM to uncover genomic risk loci that were
associated with each latent frailty factor (Psopferroni < 7.14 X 107°). We
pruned out any significantly heterogenous genetic signal (Qgyp) from
our GWAS results to ensure that we were only measuring genetic effects
that were shared between the deficits that defined that particular latent
factor (Methods). From this shared signal, we identified a total of 408
genomicrisklociacross the seven latent frailty factors (Fig. 3 and Sup-
plementary Tables 6-12). We compared results from our GWAS to the
risk lociidentified in previously published GWAS of FI*° (Supplementary
Table 13) and FP? (Supplementary Table 14). We regarded a locus as
beingfully replicated if the locus from the original GWAS study (defined
as the genomic risk locus + 100 kb) overlapped with a genomic risk
locusinany of the latent factors (Pgy,s < 5 % 1078) or partially replicated
if it demonstrated a nominally significant association with one of the
latent factors (Pggnrerroni < 0.001 (that is, 0.05/47)). All the tested loci were
replicated by atleast one of our latent factors, ensuring that the direc-
tion of effect was also concordant across studies when aligned to the
same reference allele (Supplementary Tables 13 and 14). We validated
six of the Flloci and 21 of the FP loci with the residual factors (that is,
factors 1-6) instead of the general factor, indicating that our model
can comprehensively define subgroups within the frailty construct,
which one aggregate measure overlooks. Furthermore, five of the FI
lociand 15 of the FP loci were also significant for the single-nucleotide
polymorphism (SNP)-level heterogeneity metricinthe current analyses.
As Qq\p identifies SNPs that are probably deficit-specific or that show
heterogeneous effects between the included frailty deficits, these
findingsindicate that existing aggregate frailty measures are sensitive
to large effects driven by a single indicator that are not part of more
general frailty pathways.

Frailty-associated gene expression and epigenetic changes

We completed a series of post-GWAS analyses to explore how the
genetics underpinning each of the frailty latent factors may influence
theunderlying biology. We applied multi-marker analysis of genomic
annotation (MAGMA) gene property analysis to test for enriched gene
expression changes in 54 body tissues and stratified genomic SEM
to test for enrichment in 146 functional annotations linked to gene
expression and epigenetic changes in tissues and cell subtypes in the
brain (Fig. 4 and Methods).

MAGMA gene property analysis showed significant enrichment
in the brain and pituitary gland for all the latent frailty factors except
for those underlying the multimorbidity (factor 3) and disability (fac-
tor 6) pathways (Fig. 4a). The only other tissues that demonstrated
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Fig.2|Heatmap of the genetic correlations between aging-related health
outcomes and each of the latent factors from the frailty bifactor model.
Genetic correlations with atwo-sided g < 0.05 are in black font. We used FDR
correction to account for multiple testing. The blue shading represents a positive

genetic correlation, whereas the red shading represents a negative genetic
correlation. For visualization purposes, only health outcomes that demonstrated
atleast one g < 0.05 with one or more of the latent factors are included in this
figure (full results can be found in Supplementary Table 5).

significantly enriched changesin gene expression were the reproduc-
tive organs, whereby factor 2 (unhealthy lifestyle) showed significant
gene expression changes in the testis, factor 3 (multimorbidity) showed
significant changesingene expressioninthe cervixand uterus, and fac-
tor 5 (poorer cognition) showed significant gene expression changes
inthe ovaries (Supplementary Table 15).

Stratified genomic SEM provided a more in-depth picture of
enrichment in the brain (Supplementary Table 16). We found wide-
spread enrichmentingene expression and epigenetic changes through-
out brain regions in oligodendrocytes and neurons for the general
factor of frailty. However, the widespread nature of this enrichment
demonstrates that using an aggregate measure of frailty is less likely
to provide afine-tuned picture of the underlying mechanisms of frailty

because of its generalized impact onbrain function. In contrast, resid-
ual factors provided a more detailed understanding of the pathways
implicated by different frailty deficits, which could present future
therapeutic targets within the broad spectrum of frailty (Fig. 4b). For
instance, factor1(limited social support) only showed significant gene
expression changes in the dorsal striatum (caudate and putamen)
and methylation changes in the substantia nigra, whereas factor 2
(unhealthy lifestyle) showed enriched gene expression in the spinal
cordbut notany of the tested brainregions. Inaddition, factor 5 (poorer
cognition) showed gene expression enrichmentin excitatory prefrontal
cortex neurons and oligodendrocyte precursor cells, as well as epige-
neticchangesinthe angular gyrus, cingulate gyrus, anterior caudate,
dorsolateral prefrontal cortex, hippocampus and substantia nigra.
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Fig. 4 |Results from the MAGMA gene property analysis and stratified
genomic SEM. a, The y axis denotes the one-sided —log,,(P) of the enrichment
between each latent frailty factor and body tissues from GTEx v.8 (only tissues
with significant enrichment are displayed). The dashed line denotes the cutoff
for nominal significance (that is, one-sided P < 0.05); the bars marked with an
asterisk indicate tissues that remained significantly enriched with the latent
frailty factor after adjusting for multiple testing using FDR correction (that s,

one-sided g < 0.05). The full results are shown in Supplementary Table 15.

b, Heatmaps of the enrichment values calculated using stratified genomic SEM
to test for differences in gene expression and epigenetic marks associated with
each latent frailty factor in a selection of brain-relevant tissues and cell types.
Significant enrichment values that passed FDR correction for multiple testing are
marked with an asterisk (that is, one-sided g < 0.05). Full results can be found in
Supplementary Table 16.

Gene prioritization and pathway analysis

We used five methods to map potentially causal genes to each latent
frailty factor to assess the biological pathways that might be associated
with each frailty subgroup (Fig. 5a). These methods included map-
ping SNPs to genes based on their position, whether they were known
expression quantitative trait loci (eQTLs) or if they were located in
promoter regions known to regulate chromatin interactions (Sup-
plementary Tables 17-23). In addition, we performed a genome-wide
gene-based test using MAGMA (Supplementary Tables 24-30) and
applied summary-data-based Mendelian randomization (SMR) toiden-
tify SNPs that demonstrated evidence of having a pleiotropic effect on
expression, splicing or methylation changes in gene function (Sup-
plementary Tables 31-37). We triangulated the results from these five
gene mapping techniques and prioritized the most likely candidate

genes based on whether they were mapped by three or more of the
methods. Thisresultedin1,195 genes being prioritized, which we took
forward for pathway analysis (54 for the general factor; four for factor
1(limited social support); 20 for factor 2 (unhealthy lifestyle); 585 for
factor 3 (multimorbidity); 194 for factor 4 (metabolic problems); 266
for factor 5 (poorer cognition) and 72 for factor 6 (disability); Supple-
mentary Note). Using METASCAPE, we performed enrichment analysis
toidentify Gene Ontology and disease pathways that were significantly
associated with the prioritized genes mapped to each latent factor®.
Asthere canbe extensive redundancy between gene sets, we combined
highly correlated enriched pathwaysinto clusters, named according to
the Gene Ontology pathway that had the strongest enrichment with the
latent frailty factors (Methods and Fig. 5b). As the general factor was
orthogonal to the other latent frailty factors, we conducted pathway
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Fig. 5| Overview of the gene prioritization pipeline and results from the
pathway enrichment analysis for the residual frailty factors. a, Overview

of the methods used to conduct gene prioritization and subsequent pathway
analysis for the latent frailty factor GWAS results. b, Heatmaps of the results for
the combined pathway enrichment analysis of the residual frailty factors (that

is, factors 1-6). Top: the heatmap shows the results for the top 20 most enriched
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ontheyaxis). Bottom: the heatmap displays the results for the top 20 most
significantly enriched disease pathways from the DisGeNET database. There
were no significantly enriched pathways for factor 1 (limited social support)
because only four genes (CTNNDI, TMX2, MED19 and EGR3) were mapped to that
latent factor. FDR correction was used to account for multiple testing; significant
enrichment values are marked with an asterisk (that is, one-sided g < 0.05). GFR,
growth factor receptor; mQTL, methylation QTL; sQTL, splicing QTL; VEGFA/R2,
vascular endothelial growth factor A/receptor 2.

analysis separately for that factor but performed acombined analysis
for factors1-6 toaccount for the potential overlap inimplicated gene
pathways owing to the presence of inter-factor correlations between
these latent residual factors.

Pathway analysis of the prioritized genes for the general fac-
tor identified only two significantly enriched disease pathways for
intelligence and scoliosis (Supplementary Tables 38-40). In con-
trast, we found high levels of significant enrichment (thatis, g < 0.05)
for all residual latent frailty factors, except for factor 1 (Fig. 5 and

Supplementary Tables 41-43). The most strongly enriched pathway
cluster (lead Gene Ontology term = RNA polymerase | promoter
opening) included multiple gene sets linked to known aging-related
processes, including telomere function, amyloid fiber formation
and oxidative stress, and was significantly enriched across factors 2
(unhealthy lifestyle), 3 (multimorbidity), 5 (poorer cognition) and
6 (disability). Other pervasive cross-factor enrichment implicated
immune function, epigenetic regulation and cancer as key pathways
involvedin frailty pathogenesis. In addition to the shared enrichment
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inaging-related pathways observed across the factors, we also found
evidence for discriminant validity of frailty factors. For example, only
factors 3 (multimorbidity) and 5 (poorer cognition) demonstrated
significant enrichment for pathways linked to Alzheimer’s disease
and general neurodegeneration. Factor 3 (multimorbidity) was also
enriched in protein maturation and folding pathways, providing con-
sistent evidence that aspects of frailty related to multimorbidity and
cognition may be more highly linked to dementiaand neurodegenera-
tive pathways compared to other aspects of frailty. Factor 4 (metabolic
problems) genes were enriched in gene sets linked to cell signaling
(particularly the Rapl pathways) and 16 p11.2 distal deletion syndrome.
Thisisararesyndrome that results from the partial deletion of the short
arm of chromosome 16, leading to symptoms including intellectual
disability, developmental delay and autism spectrum disorder. This
syndrome can be caused by unmasked recessive mutations in the
CLN3 gene”, which was where the most significant risk locus for our
frailty GWAS was located (lead SNP rs27741; factor 4 P=1.09 x 107%)
(Fig.3). Enrichment analysis of the disease pathways from the DisGeNET
database further demonstrated that frailty factors display a distinct
underlying biology. Factor 3 (multimorbidity) genes were strongly
enriched in pathways linked to red blood cell and lipid biomarkers,
whereas factors 2 (unhealthy lifestyle) and 6 (disability) genes were
significantly enriched in cancer pathways, and additionally, in gout
and arthritis pathways for factor 6.

Polygenicrisk scores predict frailty in external cohorts

To validate latent frailty factors as phenotypes that capture
frailty-specific variance, we created polygenic risk scores (PRSs) for
each latent frailty factor and used regression models to test how well
they predicted frailty and frailty-related outcomes in three external
olderadult cohorts (the Lothian Birth Cohort 1936 (LBC1936) (n =1,005;
mean age = 69.60), the English Longitudinal Study of Aging (ELSA)
(n=7,181,mean age = 68.45) and the Prospective Imaging Study of Aging
(PISA) (n=3,265, mean age = 60.34)) (Methods and Supplementary
Note). To measure the cumulative predictive capacity of our frailty
model, we also created a PRS phenotype that combined the polygenic
signal of all seven frailty factors using multiple regression (herein
referred to as multi-PRS). This allowed us to compare the performance
of our overarching multivariate modelin predicting frailty status rela-
tive to PRSs created from existing aggregate frailty GWAS measures
(thatis, the FI-PRS* and FP-PRS?). The combined multi-PRS provided
the strongest prediction of the Flin PISA and ELSA and was compara-
ble to the FI-PRS in LBC1936 (Fig. 6a and Supplementary Table 44).
Furthermore, the individual PRS for each latent factor, except for the
PRS for factor 1 (limited social support), were significantly associated
with Flstatusinatleast two of the three cohorts, indicating that these
construct capture frailty-relevant genetic variance (Fig. 6b and Sup-
plementary Table 44).

To assess the influence of sex and age on the latent frailty fac-
tors, we split each of the latent factor PRS phenotypes into quintiles
(Methods). None of the cohorts demonstrated significant associations
between the PRS quintiles and sex. In contrast, significant associations
betweenincreasingage and higher PRS quintiles were observed for the
F2-PRS (F=2.71,P=2.86 x107?),F3-PRS (F=3.55, P=6.78 x107%), GF-PRS
(F=2.88,P=2.14 x10%) and the multi-PRS (F=4.90,P=6.00 x10™*)in
ELSA, the F4-PRS (F=2.46, P=4.36 x107%) in PISA and the multi-PRS
(F=3.29,P=1.09 x107) in LBC1936.

We additionally measured the association of the latent frailty PRSs
with other frailty-related health outcomes, which helped provide a
more detailed picture of how these frailty subgroupings may differ-
entially affect aging processes (Supplementary Table 45 and Supple-
mentary Note). We found that the PRS for factor 5 (poorer cognition)
and the multi-PRS significantly predicted lower cognitive ability in
LBC1936 (8=-0.68,s.e.=0.10,g=4.03 x10° and 8=-0.59;s.e.=0.10,
g =4.63x107),but not cognitive change. The PRS for factor 5 (poorer

cognition) was also significantly associated with reduced visuospatial
reasoningin PISA (8=-0.11,s.e.=0.03,g =5.64 x107*).

We used elastic net regression to jointly model the PRS for the
seven frailty factors so that we could rank the order that each con-
tributed to predicting frailty status (Fig. 6c-e and Supplementary
Table 46). The general factor of frailty was ranked as the highest con-
tributor to Flpredictionin allthree tested cohorts. We also used elastic
netregression to rank the performance of the full latent frailty model
(multi-PRS) against the previously derived aggregate frailty GWAS
measures (FI-PRS and FP-PRS). We found that the multi-PRS outper-
formed the FI-PRS and FP-PRS when predicting Fl status in ELSA and
PISA (Fig. 6f—~h and Supplementary Table 47). Sensitivity analyses that
grouped samples according to age demonstrated that the predic-
tive contributions of the latent factor PRS remained consistentin the
older age groups (Supplementary Note). Together, these findings vali-
dated our model as representing a new genetic measure that captures
frailty-relevant pathways, which explained more genetic variance than
aggregate GWAS measures used in the field so far.

Discussion

Here wereportagenomic factor analysis of frailty. We introduce seven
new latent constructs of the shared genetics between 30 frailty deficits,
including ageneral factor of frailty and six additional residual factors
representing genetic overlap betweendistinct subsets of frailty deficits.
Qualitatively, the sixresidual factors representissues related to limited
social support, unhealthy lifestyle, multimorbidity, metabolic prob-
lems, poorer cognition and disability. We identified 408 genomic risk
locifor these latent constructs that are enriched for pathways related
toaccelerated aging, including epigenetic modifications and immune
regulation. This demonstrates a substantial advance in genomiclocus
discovery for frailty compared to prior GWAS of aggregate frailty meas-
ures, which only identified 14 genomic loci for the FI*° and 37 genomic
loci for the FP?. We further validated the latent constructs as being
relevant to frailty and related health outcomes at multiple levels of
biology and in the prediction of frailty status in external data.

Our findings support previous phenotypic studies that highlight
the merit, relative to single aggregate scores, of using data reduction
methods to improve our understanding of frailty etiology'>***. How-
ever, by taking amultivariate genomic approach, we were able to inte-
grate theoretical knowledge with biological evidence to better define
the underlying pathways of frailty and to differentiate generalized
pathogenic pathways from more nuanced pathways that are specific
toasubset of deficits, both of which are fundamental to understanding
this complex clinical construct. For example, our genetic correlation
and pathway analyses implicate immune function and epigenetic
modifications as being key drivers of frailty pathogenesis across mul-
tiple deficit groupings. This is in line with findings linking frailty and
elevated C-reactive proteinlevels, red blood cell distribution width and
white blood cell count®’, Our frailty factors were also significantly
genetically correlated with health complications associated with infec-
tion, including hospitalization and sepsis. The associations between
frailty and commonviralinfections, such as pneumonia*’, coronavirus
disease 2019 and urinary tract infections® are well documented.
Furthermore, our findings consistently demonstrated evidence for
widespread epigenetic changes in frailty, supporting previous work
suggesting that epigenetic biomarkers, such as epigenetic clocks® or
epigenetic risk scores®, could be effective predictors of frailty. At the
gene level, our analyses prioritized potential causal genes related to
distinct frailty subgroups that may help to refine our understanding of
frailty biology, eveninscenarios where agene has widespread effects.
For example, the MEF2C gene has animportant rolein cardiovascular,
neurological and musculoskeletal development, as well as metabolic
regulation® . However, MEF2C only mapped to the poorer cognition
latent factor (factor 5) in our study, indicating that its role on cognitive
function® seems to be the key pathway related to frailty.
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Fig. 6 | Results from the PRS analyses of the latent frailty factors conducted
inthe LBC1936 (n = 1,005), PISA (n = 3,265) and ELSA (n = 7,181) cohorts.

a, Bar plot of the variance explained (R?) by each PRS that we estimated to predict
the Flin each external cohort. b, Forest plot of the estimated odds ratios for
frailty (measured by the FI) per s.d. of the PRS distribution for each latent frailty
factor in each external cohort. Data are represented as odds ratios and their
corresponding 95% confidence intervals (Cls) as the error bars. These values were
calculated using linear regression models. We applied FDR correction to account
for multiple testing and significant predictions (that is, two-sided g < 0.05) are

B B

depicted as filled circles, whereas nonsignificant predictions are depicted as
empty circles. c-e, Bar plots of the elastic net regression analyses ranking the
contributions of the seven latent frailty factors in predicting frailty status in
LBC1936 (c), PISA (d) and ELSA (e). Each model included all seven latent factor
PRS as well as age, sex and ancestral PCs as covariates. f-h, Bar plots of the elastic
net regression analyses that ranked the performance of our multi-PRS (that is,
combined latent frailty factor score) when modeled with the aggregate FI-PRS,
the aggregate FP-PRS, and age, sex and ancestral PCs included as covariates in
LBC1936 (f), PISA (g) and ELSA (h). All analyses represent standardized results.

The seven frailty factors displayed discriminant validity across
multiplelevels of biological analysis, indicating that existing aggregate
measures of frailty are likely to miss clinically relevant distinctions.
For example, we found that the poorer cognition factor (factor 5) was
the only latent frailty factor that displayed significant genetic overlap

with Alzheimer’s disease. In addition, our GWAS and gene prioritiza-
tion findings implicated SP/I as a key locus for factor 5, which is a
well-replicated Alzheimer’s disease risk locus®*'. Interestingly, factor
5 had similar factor loadings from lower fluid intelligence and poor
self-reported overall health rating, indicating that subjective health
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reports, as well as cognitive testing, could be indicative of subsequent
heightened Alzheimer’s disease risk in individuals who present with
these frailty deficits. In fact, subjective cognitive decline has been
widely supported as a potential early marker of cognitive impair-
ment*2. The other loading onto this latent factor was slow walking
pace, which is independently associated with heightened dementia
risk®. In addition, slow gait and subjective cognitive decline are used
to measure motoric cognitive risk, a syndrome strongly associated
with subsequent dementia**.

Furthermore, our genetic correlation found that the multimorbid-
ity factor (defined by the number of illnesses and high mean arterial
pressure) is astrong driver of frailty over and above the variance cap-
tured by ageneral aggregate measure of all frailty deficits. Prevalence
of multimorbidity and associated polypharmacy is a global public
health concern, with rates as high as 90% in certain populations*. This
latent factor produced by far the highest number of genomic risk loci
and PRS analyses demonstrated that its predictive power was con-
sistently strong across the external cohorts. Gene prioritization and
pathway analysisindicated enrichmentin a wide array of aging-related
pathways, including VEGFA SIGNALING, which was recently identified
inamultivariate GWAS of aging* and has been shown to be important
in longevity*. Taken together, our findings suggest that this latent
factorincludesabroadset of disease-related biological pathways that
are associated with the most common diseases found in populations
that lead to a heightened risk for developing frailty and accelerated
aging. This provides empirical support for the ‘geroscience hypoth-
esis’, which theorizes that manipulating aging physiology will prevent
associated diseases*®.

Our findings should be viewed in light of several limitations. We
did not explore the impact of sex differences, which are important
inaging as evidenced by significant prevalence differences in frailty
acrossall age groups*. Our tissue enrichment analyses alluded to this
with significant enrichmentidentified for the sex-specific reproduc-
tive organs. However, sex chromosomes are often excluded from
GWAS results®’, and multivariate methods designed for analyzing
this type of dataare currently lacking. As data and methods become
available, future work should examine the influence of genetic vari-
ation in the sex chromosomes on the sex-specific prevalence and
clinical manifestations of frailty. Furthermore, our analyses were
restricted to samples of European genetic ancestry as the meth-
ods rely on linkage disequilibrium information that can vary across
ancestral populations. Unfortunately, despite advancesin collecting
genomic datafrom multiple populations, it was not possible to iden-
tify publicly available GWAS data for the frailty deficits to conduct a
multi-ancestry analysis, but this should be amajor focusin the future
to make these results more generalizable globally. Finally, the labels
of the six residual latent factors in our model should be interpreted
asnon-definitive, theoretical approximations of the genetic variance
that underpins them. This is an inherent feature of SEM approaches
more generally as the shared variance captured by a latent factor is,
by design, representative of an unmeasured construct. Therefore,
we had to combine our empirical results with theoretical reasoning
todetermine what shared processes we believed these latent factors
are capturing (see the Supplementary Note for justification of the
factor names used).

Inconclusion, we haveintroduced agenomiclatent model of frailty
and demonstrated the added potential of modeling frailty as multiple
latent factors, representing both a generalized pathway of frailty and
distinct subgroups of deficits that share an additional underlying
biology. This can be contrasted with previous studies that have relied
solely on aggregate measures of frailty. This more nuanced model
offers unique etiological insights into frailty and may aid in refining risk
stratification of patients. Our genomic model of frailty may also help to
develop new preventive and therapeutic strategies that minimize the
broad range of adverse frailty-related health outcomes.

Online content
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maries, source data, extended data, supplementary information,
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Methods

Ethics

Ethical approval was not required for most of the analyses in this study
because they used publicly available summary data only. However,
for the PRS analyses that required access to individual-level data, we
received ethical approval from the relevant study boards for each
external cohort (Supplementary Note).

Phenotype selection

Phenotypes were selected based on the deficits described by the FI°.
We specifically included traits that reflected systemic pathways and
health behaviors (for example, number of diagnosed illnesses) as
opposed to specific clinical diagnoses (for example, type 2 diabetes)
to model genetic variance for general aspects of frailty rather than
disease-specific pathways. Traits were included if they had GWAS sum-
mary statistics that were publicly available in a sample of 10,000 or
more individuals of European ancestry. Analyses were restricted to
European ancestry because the methods used to estimate genetic
overlap rely on ancestry-specific patterns of linkage disequilibrium
and GWAS of sufficient sample sizein other ancestry groups are not yet
available across all the frailty traits. We prioritized the use of GWAS data
from consortium-based studies because these tend to pool the largest
sample sizes and have more rigorous phenotypic definitions™> %2,
When consortia data were not available, we used GWAS summary
statistics downloaded from the Pan-UK Biobank (https://pan.ukbb.
broadinstitute.org). Supplementary Table 1 summarizes the 52 traits
includedinourinitial analysis. The effect estimates for each trait were
formatted in a direction that reflected the ‘risk-inducing’ phenotype
for frailty.

Weinitially conducted multivariable linkage disequilibriumscore
regression (LDSC) using the default parametersinthe GenomicSEMR
package to estimate the SNP-based heritability () of each deficit
phenotype and the bivariate genetic correlations (r,) between each
pair of frailty deficits". We used these results to guide the selection of
frailty deficits that could be reliably included in a multivariate latent
model (Supplementary Note). This resulted in a final list of 30 traits
that were brought forward for all subsequent analyses (Supplementary
Table1). AnFlconstructed with 30 or more deficits hasbeenshown to
sufficiently capture frailty®.

Genomic factor analysis

Exploratory factor analysis. As the latent pattern of the shared genetic
architecture between frailty deficits had not been assessed previously,
we initially ran an exploratory factor analysis (EFA) using the stats
R package to identify a plausible latent structure that describes the
genetic overlap across the included frailty deficits. To avoid model
overfitting, we used the genetic covariance matrix estimated in odd
autosomes as the input to the EFA and the genetic covariance matrix
estimated in even autosomes as the input for the subsequent CFA. We
used the Kaiser rule® and the number of optimal coordinates test™
to determine the number of factors to extract in the EFA; both sug-
gested that seven factors were appropriate. We additionally extracted a
six-factor model (Supplementary Table 48) as there was a high number
of cross-loadings in the seven-factor specification, indicating that a
more parsimonious structure may be appropriate, and the fifth factor
in the seven-factor model only captured genetic variance related to
mean arterial pressure (Supplementary Table 49). We applied promax
factor rotation, which allows for inter-factor correlations.

Confirmatory factor analysis. We then conducted a CFA using the
diagonally weighted least squares method and the genetic covariance
matrix from the even autosomes as input. The CFA model was guided
using the EFA results, where a frailty deficit was specified toloadona
factor when standardized loadings were 0.30 or greater. The six-factor
(CFI=0.92; SRMR =0.07) and seven-factor model specification

(CFI=0.89; SRMR = 0.07) both provided a good fit to the even auto-
some data (Supplementary Table 50). The six-factor model was selected
over the seven-factor model because it (1) provided improved fitto the
data while offering a more parsimonious representation of the data;
(2) produced more theoretically interpretable factors of latent genetic
architecture between distinct groups of multiple frailty deficits; and (3)
continued to provide good fit to the datain all autosomes (CFI = 0.92;
SRMR =0.06) (Supplementary Table 51).

Bifactor model. While the six-factor model produced theoretically
meaningful latent factors, the first latent factor displayed strong fac-
tor loadings for 16 of the 30 frailty deficits and the model included
pervasive cross-loadings of frailty deficits on multiple factors. This
indicated that a bifactor model was an appropriate way to capture
the general frailty pathways across all included deficits, as well as the
genetic variance specific to distinct subsets of deficits.

Therefore, we estimated the fit of a bifactor model that included
loadings for all 30 frailty deficits onto a general factor of frailty (general
factor), inaddition totheloadings onthesix latent factors fromthe CFA
model (factors 1-6). A key benefit to this approach is that the general
factor is orthogonal (that is, uncorrelated) to the additional residual
group factors, which enabled us tointerpret the general factor as gen-
eral genetic pathways of frailty that are distinct from the more focused
subsets of genetic variance that underlie potential subgroups within
the frailty spectrum. A bifactor model thereby provided amore direct
test of our hypothesis that aggregate scores of frailty (for example,
the Fland FP) miss unique risk pathways that are only shared between
smaller subsets of frailty deficits.

Owing to the inclusion of the general factor, some of the original
factor loadings for the six CFA factors became nonsignificant. We
iteratively removed any loadings from factors 1-6 that were less than
0.30to ensure that we only retained stable loadingsin the final model
specification. In cases where anindicator displayed loadings above our
cutoff for multiple residual factors, we retained these cross-loadings
because a previous simulation study found that omitting substantial
cross-loadings from a bifactor model based on a prior CFA model can
upwardly bias the general factor loadings and downwardly bias residual
group factor loadings, which cannot be picked up using standard model
fitmeasures®.

We allowed the residual group factors (factors 1-6) to be cor-
related (but orthogonal to the general factor). This form of bifactor
model is known as a bifactor (S-1) model and is sufficiently identified
ifasubset of theindicators onlyload onto the bifactor (in our case 50%
of the frailty deficits solely loaded onto the bifactor)®. To ensure the
model was locally identified, factor loadings were constrained to be
equal when there were only two indicators that loaded onto a factor
(that s, for factors 1and 3). The final bifactor (S-1) model (Fig. 1 and
Supplementary Table 3) continued to provide good fit to the data
(CFI=0.93; SRMR = 0.07) and was brought forward for all subsequent
analyses.

Genetic correlations with related health traits

Frailty isknowntoincrease therisk of many adverse health outcomes,
but it is unclear whether this is because of shared genetics between
the more general frailty pathways or whether some outcomes are only
associated with certain deficitsin the frailty state. Furthermore, as this
represented the first time that frailty has been measured in this latent
framework, we wanted to validate that our factors reflected frailty.
Therefore, we used genomic SEM to calculate the genetic correlations
between 52 aging-related health outcomes and existing frailty pheno-
types and each of the latent frailty factors (Supplementary Tables 4
and 5)?°?%2°81_We used the same quality control procedures on the
GWAS summary statistics for these outcomes as described for the
main frailty deficits (Supplementary Note) and used an FDR-corrected
g <0.05thresholdto correct for multiple testing. However, in the case
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of pneumonia, there were no prior available GWAS summary statistics
with an SNP-based heritability estimate high enough to be included
in the LDSC. Therefore, we conducted a fixed-effect meta-analysis
using the METAL software, which included GWAS summary statistics
data from the Pan-UK Biobank (https://pan.ukbb.broadinstitute.org)
(Neases = 14,054 and n 01 = 405,999) and FinnGen release 10 (https://
r10.finngen.fi/) (Neues = 63,377 and Neoperois = 348,804). This resulted
in a total GWAS sample of 832,234 individuals (n ., = 77,431 and
Neontrots = 754,803), which produced a reasonable SNP-based herit-
ability for LDSC (Supplementary Table 4; z-statistic = 4.1).

Multivariate GWAS of latent frailty factors

GWAS estimation. We performed a multivariate GWAS within the
GenomicSEM R package that estimated the individual SNP associations
with each of the latent factors in our bifactor (S-1) model. After data
standardization (Supplementary Note), 5,849,452 SNPs were included
in our multivariate GWAS. We fixed the measurement model (that is,
the genome-wide factor loadings and factor correlations) for all SNPs.
Thisimproved computational tractability and model interpretability
as the SNP-specific estimates were scaled according to the same meas-
urement model across all SNPs (as opposed to the entire model being
reestimated for each SNP). We removed any SNPs that required a high
level of smoothing (that s, z-statistic change before and after smooth-
ing greater than 1.96) or that produced lavaan warnings for negative
observed variable or latent variable variances or nonpositive definite
covariance matrices (293 SNPs removed in total).

Q;\p heterogeneity index. As described previously, not all the genetic
signal capturedin thelatent factor GWAS results represents genuinely
shared genetic variance. For example, a strong signal from a single
indicator (for example, the FTO locus for body fat percentage) can
lead to false positives if not properly accounted for®, Likewise, some
of the nonsignificant genetic signal in the multivariate GWAS results
may represent areas of the genome that have highly heterogenous
magnitudes and directions of effect on the different univariate indica-
tors®. For thisreason, it is necessary to calculate the Qg heterogeneity
statistics for each SNP, which reflects a y>-distributed statistic that is
higher for SNPs whose effects deviate strongly from the patterning of
effectsimplied by the factor model.

Aspartofthe current project, we introduced and validated amore
computationally efficient way of calculating Qe using a closed-form
estimation method. While the prior model comparison formulation
of Qs\p required estimating a series of follow-up models to calculate
the heterogeneity statistic®, our new formulation was automatically
calculated for each factor predicted by an SNP in the model. This
change thereby greatly reduced the runtime of our analysis. The new
closed-form Qg equation starts by calculating the residual covariance
matrix for the subset of the matrix that reflects the SNP-phenotype
covariances for the phenotypes that load on a given factor (Rgyp) as:

RSNP = SSNP - Z GSNP )]

where Sgyp is the vector of SNP-phenotype covariances and Y, Osyp
reflects the model-implied SNP-phenotype covariances. These
model-implied estimates reflect the product of the estimated SNP
effectonagivenfactorand the factorloadings for each trait. The preci-
sion of those SNP-phenotype estimatesis indexed by taking the eigen
decomposition of the portion of the sampling covariance matrix (V)
that indexes those SNP-phenotype effects (Vsyp):

Ve =(PP)<EO> A (¥)]
sve = PiPo){ o P,

where P, is the matrix of PCs (eigenvectors) of Vg, P, is the null space
of Vs and E is a diagonal matrix of the nonzero eigenvalues of Vgyp.

These eigenvalues and eigenvectors can then be used to weight the
residual covariance matrix of the SNP-phenotype estimates to obtain
a x>-distributed test statistic given as:

Qsnp (d.f.) ~ Ronp PLEPy Rsnp 3

where d.f. reflects the degrees of freedom, which will be one less than
the number of indicators for the factor. This equation is iteratively
appliedforeachfactorthatis predicted by an SNP, such thataseparate
Rsnp, Vonp and factor-specific Qgyp are produced.

Via simulation, we demonstrated that this new closed-form
approach continues to produce a x>-distributed statistic that is sta-
tistically equivalent to the previously described model comparison
formulation of Qg, We used the simulateData function in the lavaan
R package to simulate data for three different factor models each
with 50,000 observations for 1,000 SNPs. We tested a 2-factor model
with3indicatorsoneachfactor (2d.f.),a2-factor model with 4 indica-
tors on each factor (3 d.f.) and a 2-factor model with 6 indicators on
each factor (5 d.f.). We confirmed across all three examples that the
closed-form method remained y*-distributed and that they did not
differ significantly from the estimates calculated using the previous
model comparison method in terms of the mean Qgy, (Supplementary
Note). Inaddition, the closed-form method consistently demonstrated
awell-calibrated typelerror rate (P < 0.05) (Supplementary Note).

For our empirical frailty application, we pruned out the Qg
significant signal from our GWAS summary statistics for each latent
frailty factor to ensure that we only measured shared genetic vari-
ance operating via each latent factor in our subsequent post-GWAS
analyses. We did this by removing SNPs that had a Bonferroni-corrected
Qe P<7.14 x107° (that is, 5 x1078/7), and any SNPs that were within a
1-Mb window upstream or downstream of this location to ensure that
variants that were in linkage disequilibrium with these heterogenous
regions were removed.

Once the Qgypsignal had been pruned from the latent factor sum-
mary statistics, we used the method developed by Mallard et al.** to
calculate the expected sample size (N) of each latent factor. This value
quantifies the amount of error-free genetic variance being captured
byeachlatentfactor,soitalsoactsasanindicator of how well powered
eachlatent factorisin the model.

Identification of genomicrisk loci for latent frailty factors. We used
FUMA v.1.5.2 to identify genomic risk loci for each latent factor in our
model®. We used a Bonferroni-corrected genome-wide significance
threshold of P<7.14 x107° (that is, 5 x 10~%/7 factors) to identify sig-
nificant SNPs in our pruned GWAS summary statistics for each latent
factor (thatis, Qsyp-significant variants were removed). A genomic risk
locus was defined as the region around a genome-wide significant SNP
thatincluded all SNPs that were in linkage disequilibrium (r* > 0.6) with
that variant based on the linkage disequilibrium patterns in the 1000
Genomes Project Phase 3 European ancestry reference genome®. If
there were additional independently significant SNPs in linkage dis-
equilibrium with the lead SNP (2> 0.1) or if loci were located within
250 kb of one another, these were merged into a single locus®.

Stratified genomic SEM

Asfrailty has been consistently linked toincreased risk of poorer brain
health and dementia, which represents akey burden on healthservices
in aging populations®, we explored whether there was evidence for
brain-relevant functional enrichmentin the genetic variance captured
by our latent frailty factors. We applied stratified genomic SEM®** to
test whether there was evidence for enrichmentin functional annota-
tions (groups of genetic variants combined due to having a shared
biological characteristic) that are known to influence tissue-specific
gene expression in different brain regions, histone modifications,
neuronal cell types or the interactionbetween these neuronal cell types
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and protein-truncating variant-intolerant genes. We used previously
constructed functional annotations based on data from the 1000
Genomes Project Phase 3 Baseline LD v.2.2 (ref. 85), Genotype-Tissue
Expression (GTEx)®¢, DEPICT®, Roadmap Epigenetics Project®® and
the Genome Aggregation Database®’, which consisted of a total of 172
functional annotations. Thisincluded five randomly selected non-brain
control regions for the gene expression and histone modifications®.

We performed multivariable stratified LDSC to estimate the
zero-order genetic covariance matrices and the corresponding sam-
pling covariance matrices that were partitioned across the genomic
regions of each functional annotation using thes_ldsc functionin the
GenomicSEM R package®*®. We subsequently used these matrices
as the input data to the enrich function to calculate an enrichment
ratio for the genetic variance captured in each latent factor in our
bifactor model for each functional annotation®. We removed 26
functional annotations from our analyses because of high degrees of
smoothing (defined as a z-score difference greater than 1.96 before
and after smoothing), as this indicates low power to detect meaning-
ful enrichment®. This resulted in 146 functional annotations being
retained in our analyses. We used a g < 0.05 threshold to account for
multiple testing.

Gene mapping and pathway analysis

Gene mapping. To explore the biological implications of the genomic
risk loci underlying each latent frailty factor, we applied five comple-
mentary methods to map each locus to potentially causal genes, that is,
positional mapping, eQTL mapping, chromatininteraction mapping,
MAGMA and multi-SNP SMR (SMR-multi). We used the SNP2GENE
function in FUMA (v.1.5.2)® to functionally annotate candidate SNPs
and map potentially causal genes to each locus based on positional,
eQTL and chromatin interaction information (Supplementary Note).

We used MAGMA (v.1.08)°* to conduct a gene-based analysis that
identified genes that were significantly associated with each latent fac-
tor. Any measured SNPs that werelocated in one of the protein-coding
genesin the Ensembl database (excluding the major histocompatibility
complex region) were analyzed. We used the 1000 Genomes Project
Phase 3 European dataset as our linkage disequilibrium reference panel
and applied aBonferroni correction for the number of genes tested in
each latent factor GWAS®. Using gene expression data from GTEx v.8
for 54 body tissues”, we also used MAGMA to perform a gene property
analysis to ascertain whether the genes significantly associated with
the latent factor in the gene-based test were more likely to produce
gene expression changes in particular body tissues®™.

Finally, we applied SMR-multi to prioritize genes for each latent
frailty factor by identifying SNP-outcome (that is, variant-frailty)
associations that demonstrated strong evidence for being driven
by pleiotropic effects on gene expression (eQTLs), splicing ratios
(sQTLs) or methylation status (mQTLs)*>?®. Mendelian randomization
is a well-established method used to measure the causal influence of
an exposure on an outcome using genetic variants as an instrumental
variable. For our application of SMR, exposure reflected different
measures of gene function (expression, splicing or methylation) and
the outcome reflected the different latent frailty deficits identified in
genomic SEM (Supplementary Note).

Gene prioritization and pathway analysis. To better understand the
underlying biological pathways of each latent frailty factor, we con-
ducted pathway analysis using the genes that had been prioritized by
the aforementioned gene mapping analyses asinput. However, as not
all genes that are mapped torisk loci represent truly causal genes, we
triangulated our results to only include genes that presented sustained
evidence for being a potential causal candidate for each latent factor.
We defined this as any gene that was mapped by three or more of our
gene mapping methods (that is, positional mapping, eQTL mapping,
chromatin interaction mapping, MAGMA or SMR-multi). We used

METASCAPE® to perform a pathway enrichment analysis to identify
gene sets that were significantly overrepresented in the prioritized
genes for each latent factor (Supplementary Note).

Polygenicrisk scores

Polygenic risk score construction. To externally validate our frailty
latent factors, we constructed PRS of each latent frailty factor and tested
whether they predicted frailty and related health outcomes in three
external cohortdatasets, including LBC1936, ELSA and PISA (see Supple-
mentary Note for the sample descriptions). We used the GWAS summary
statistics of the shared genetic signal for each of the latent frailty factors
(thatis, the summary statistics that had removed a significantly hetero-
geneoussignal), as well as publicly available GWAS summary statistics
from previously published studies of aggregate measures for the F"°and
FP?'to constructaseparate PRS for each of these predictor phenotypes.
This enabled us to compare the prediction of the latent frailty factors
with routinely used aggregate frailty measures. We performed routine
quality control on each of the datasets, including aligning the effect and
non-effectalleles to ensure that the direction of effect was concordant
across analyses. We removed SNPs with a minor allele frequency of less
than 0.01, as well as duplicate and ambiguous SNPs.

After quality control, PRS were calculated for the individuals in
each of the three cohorts using SBayesR. We followed default proce-
dures described in detail by the original method developers®. Briefly,
SBayesR is a Bayesian-based method that estimates joint SNP effects
across the genome using multiple linear regression while assuming a
finite mixture of normally distributed priors”.

Prediction of frailty and related phenotypes in the external cohorts.
We subsequently performed a series of analyses to explore how well the
latent frailty factors predicted routinely measured frailty phenotypes
andrelated traitsin external data. First, we used linear regression mod-
elstoassess how well eachindividual frailty latent factor PRS predicted
the Flin LBC1936 (based on 30 deficits), ELSA (based on 62 deficits) and
PISA (based on 69 deficits), and logistic regression models to measure
how wellthey each predicted the FPin LBC1936 (Supplementary Note
and Supplementary Tables 52-54). As the latent frailty factors each
represented distinct genetic variance that can contribute to frailty,
we also used multiple regression to calculate a PRS of the combined
scores for all seven latent factors (thatis, multi-PRS). Finally, to enable
usto compare the performance of the latent factor PRS with previously
published frailty GWAS aggregate measures, we also tested how well
the FIGWAS PRS (FI-PRS) and the FP GWAS PRS (FP-PRS) predicted the
same frailty outcomesineach dataset. Allmodelsincluded age, sexand
ancestry PCs (for ELSA and PISA, we used ten PCs and for LBC1936 we
used four PCs) as covariates. These models allowed us to calculate the
amount of incremental phenotypic variance explained (R?) by each PRS,
whichwas calculated by subtracting the covariate-only model R?from
the R? of the full PRS and covariate model®.

To facilitate subgroup analyses examining the effects of sex and
age, we categorized each standardized latent factor PRS variable into
quintiles. Quintiles were created by dividing the distribution of each
PRSinto five equal groups based on quantiles (20th, 40th, 60th, 80th
and 100th percentiles) using the cut function in R. This ensured that
each quintile represented approximately 20% of the sample, with
quintile1containing the lowest PRS values and quintile 5 containing the
highest PRS values. We used x> tests to assess the association between
the PRS quintiles and sex, and ANOVA tests to assess whether mean age
differed across PRS quintiles.

Toassessthe association of the latent factor PRS with frailty-related
health outcomes, we also conducted regression analyses to test the
association of each frailty PRS with cognitive ability (LBC1936), cog-
nitive change (LBC1936), dementia (LBC1936), motoric cognitive risk
(LBC1936), mortality (LBC1936), stroke (LBC1936 and PISA), cognition
and memory problems (PISA) (Supplementary Note).
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Elastic net regression to rank performance of frailty PRS. Finally, as
conventional linear regression models can be upwardly biased because
of model overfitting, we performed elastic net regularized regression
modelsinallthree cohortsto rank the polygenic contributions to frailty
while minimizing bias from model overfitting and multicollinearity
between predictors®. This method allows highly genetically correlated
variables to be grouped; the final coefficients returned in the model
allow the predictors to be ranked according to their contribution of
prediction to the outcome®. We used elastic net regression because it
combines the strengths of other commonly used prediction methods.
For example, ridge regression shrinks coefficients but does not per-
formfeature selection, whereas least absolute shrinkage and selection
operator regression performs feature selection but may miss important
predictors when variables are correlated. In contrast, elastic net regres-
sion performs both shrinkage and feature selection to identify the
most important predictors, while also managing multicollinearity'.
Previous PRS studies demonstrated the usefulness of using elastic
net regression modeling when identifying relevant predictors'®',

Weran aninitial elastic net model predicting the Flineach cohort
using the seven individual latent frailty factor PRSs and covariates
(age, sex and ancestry PCs) as predictors to rank the latent factors in
order of their strength in predicting frailty. We then performed elastic
net regression that included the multi-PRS, FI-PRS and FP-PRS and
covariates (age, sex and ancestry PCs) to rank the prediction of the
different genetic measures of frailty (that is, multiple latent factors
versus aggregate measures for the Fland FP).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thelatent frailty factor and pneumonia GWAS summary statistics cre-
ated in this study are available at the GWAS Catalog (www.ebi.ac.uk/
gwas/; accession nos. GCST90624046-GCST90624053). The frailty
PRS createdinthisstudy are available at the PGS Catalog (www.pgscata-
log.org; accessionnos. PGS005221-PGS005229). Individual-level data
used for our PRS analyses can be accessed upon reasonable request
from the relevant cohorts: LBC1936, PISA and ELSA. The univariate
GWAS summary statistics used for our frailty model and the exter-
nal health outcomes are available via the citations outlined in Sup-
plementary Tables 1 and 4, respectively. The linkage disequilibrium
scores and weights, HapMap3 SNPs and 1000 Genomes Project refer-
encefile for genomic SEM are available to download at https://utexas.
app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxollv; the functional
annotations for conducting the stratified genomic SEM are available
via GitHub at https://github.com/genomicsem/genomicsem/wiki/
6.-stratified-genomic-sem. The datasets used for positional, eQTL
and chromatin interaction mapping and the MAGMA analyses are
available at the online platform FUMA (https://fuma.ctglab.nl/); the
preprocessed eQTL, sQTL and mQTL data for conducting SMR are
available for download at https://yanglab.westlake.edu.cn/software/
smr/#DataResource. The databases used for the pathway analysis are
available via the online platform METASCAPE at https://metascape.
org/gp/index.html#/main/stepl.

Code availability

The codewas developed using publicly available software available via
the followinglinks: Rv.4.4.2, www.r-project.org/; genomic SEMv0.0.5
(including our new Qg extension), https://github.com/genomicsem/
genomicsem; METAL release 2020-05-05, https://genome.sph.umich.
edu/wiki/metal; FUMA GWAS v.1.5.2, https://fuma.ctglab.nl; SMR
v.1.3.2, https://yanglab.westlake.edu.cn/software/smr/; METASCAPE
v.3.5.20250101, https://metascape.org/gp/index.html#/main/stepl;
lavaan R package v.0.6-19, https://lavaan.ugent.be/; MungeSumstats

R package v.1.14.1, https://github.com/neurogenomics/mungesum-
stats; MAGMA v.1.08, https://cncr.nl/research/magma/; stats R pack-
age v.4.4.2, https://stat.ethz.ch/R-manual/R-devel/library/stats/
html/00Index.html; and SBayesR v.2.0, https://cnsgenomics.com/
software/gctb/#Overview. The specific custom code for the analy-
ses in this study is publicly available via GitHub at https://github.
com/IsyFoote/Frailty-Multivariate-GWAS and Zenodo at https://doi.
org/10.5281/zenodo0.15654248 (ref. 104). The code used to create the
latent growth curve models of cognitive ability and cognitive change
in LBC1936 can be found at https://lothianbirthcohorts.github.io/
longitudinal-g-models/longitudinal_g_models.
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raw genotypes and provided linked genome-wide association study (GWAS) data to the phenotypic data curated at the
Advanced Care Research Centre, University of Edinburgh. The PISA study protocol was approved by the Human Research
Ethics Committee (HREC) at QIMR Berghofer Medical Research Institute. The remaining data used in this study represents
publicly available, anonymised, summary-level data that did not require specific ethical approval to be used in our analyses.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

& Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

>
Q
g
[
=
D
©
(@]
=
S
S
=
(D
o
(@]
=)
>
«Q
wv
(e
3
3
QU
S




Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No power calculations were calculated but we only included phenotypes in our main analysis that demonstrated a strong heritable
component (SNP-based h2 Z statistic> 4), which indicates that the phenotype has enough power to be reliably included within Genomic SEM
analyses. Furthermore, we only used GWAS summary statistics that had sample sizes >10,000 individuals. Sample sizes of the GWAS summary
statistics that formed our latent model are detailed in our Supplementary Tables 1 and 4, but constitute the largest, publicly available
univariate GWAS sample for each phenotype to maximise power in our multivariate analysis. These strategies ensured that we followed the
best practice guidance on performing well-powered Genomic SEM analyses since each univariate trait had already either had power
calculations performed by the relevant consortium or was given high confidence status by the PanUKB team in their QC analyses (as described
here: https://pan.ukbb.broadinstitute.org/docs/per-phenotype-files). The expected sample size for each of the latent factor GWAS
phenotypes that we estimated was calculated using standard methods and is outlined in the methods section and in the results of our paper.
Sample sizes, including descriptive of age and sex, for the 3 external cohort datasets that we used for polygenic risk score estimation (LBC
1936, ELSA and PISA) are outlined in detail in our Supplementary Methods and in our results sections. For LBC 1936 the sample size was 1,005
individuals, for ELSA it was 7,181 individuals and for PISA it was 3,265 individuals.

Data exclusions  Owing to a reliance on linkage disequilibrium information for the methods used here, we excluded participants of non-European ancestry as
we did not have sufficient data available to conduct our analyses reliably in non-European ancestry populations. We also excluded genotyped
and imputed SNPs with a minor allele frequency <1% and an imputation score <0.9 (for LDSC analyses) and <0.6 for our multivariate GWAS
analysis, in line with the standard recommendations for these methods.

Replication Since there were not separate samples large enough to fully replicate all 30 GWAS traits in our main analysis, we conducted exploratory factor
analysis in the odd autosomes and confirmatory factor analysis in the even autosomes to minimise overfitting our model. We performed our

polygenic risk score analyses in 3 external datasets that were not overlapping with our GWAS summary statistics from which the risk scores
were estimated.

Randomization  Not relevant to this study as it was not a clinical trial study and all data was from observational studies.

Blinding Blinding was not relevant to the current study because the study utilised summary data and observational analytical methods that did not
require the researcher to provide an intervention to participants at any point.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines IX D Flow cytometry
Palaeontology and archaeology IX D MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Seed stocks N/A

Novel plant genotypes ~ N/A

Authentication N/A
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