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Uncovering the multivariate genetic 
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Simon R. Cox    3,4, Michelle Luciano    3,4, Kenneth Rockwood    10,11 & 
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Frailty is a multifaceted clinical state associated with accelerated aging 
and adverse health outcomes. Informed etiological models of frailty hold 
promise for producing widespread health improvements across the aging 
population. Frailty is currently measured using aggregate scores, which 
obscure etiological pathways that are only relevant to subcomponents of 
frailty. Here we perform a multivariate genome-wide association study of the 
latent genetic architecture between 30 frailty deficits, which identifies 408 
genomic risk loci. Our model includes a general factor of genetic overlap 
across all deficits, plus six new factors indexing a shared genetic signal 
across specific groups of deficits. We demonstrate the added clinical and 
etiological value of the six factors, including predicting frailty in external 
datasets, highlighting divergent genetic correlations with clinically relevant 
outcomes and uncovering unique underlying biology linked to aging. We 
show that nuanced models of frailty are key to understanding its causes and 
how it relates to worse health.

Frailty is a complex clinical state that affects more than 40% of adults 
aged over 65 years1. It is defined as a state of progressive, multisystem 
physiological decline that reduces an individual’s ability to withstand 
external stressors1. This deterioration can lead to both physical and 
mental impairments and is strongly associated with adverse health 
outcomes, including earlier mortality2 and increased levels of disabil-
ity and hospitalization3. Global population aging means that frailty 
represents a growing public health concern4. Family-based studies 
indicate a substantial genetic component to frailty, with heritability 
estimates of ~45% (ref. 5). Therefore, genetic methods offer a promising 
tool to better understand the risk pathways to this critical health state. 
Nevertheless, the etiology of frailty is largely unknown, limiting our 
potential to identify effective therapeutic or preventive treatments. 

We hypothesized that what has limited our etiological understanding 
is that we have traditionally only considered aggregate measurements 
of frailty in genetic studies.

The two most common methods for measuring frailty are the 
Frailty Index (FI) and the Fried Frailty Phenotype (FP)6,7. The FI quanti-
fies frailty by calculating the proportion of ‘deficits’ that are present 
in an individual from a set of 30 or more phenotypes associated with 
poor health outcomes in older adults6. The FP uses an aggregate score 
across five physical frailty deficits (weight loss, weakness, exhaustion, 
slow walking speed and physical inactivity), where the presence of three 
or more of these deficits indicates frailty7. Although the FP has been 
widely reported in large samples, it is intended to capture pathways of 
physical frailty and may not provide sufficient information to assess 
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We used genomic SEM to identify new groupings of genetic over-
lap between 30 frailty deficits using publicly available genome-wide 
association study (GWAS) summary statistics. We identified 7 distinct 
latent factors underpinning frailty, which displayed unique genetic 
overlap with clinically relevant health outcomes and were defined 
by divergent sets of genomic risk loci and biological pathways, which 
provided empirical support for most of the 12 hallmarks of aging14. In 
combination, these latent constructs yielded enhanced prediction 
of frailty status in external cohorts and a dramatic improvement in 
genomic locus discovery compared to aggregate measures.

Results
Multivariate genetic architecture of frailty
After careful quality control and selection of frailty deficits from an 
initial pool of 52 traits (Methods and Supplementary Note), we used 
genomic SEM to model the genome-wide genetic overlap from GWAS 
data for 30 frailty deficits15–19 (Fig. 1 and Supplementary Tables 1 and 2).  
We provide a detailed explanation of the reasons for the removal of 

the more nuanced subgroupings that may occur in the broader frailty 
construct8. By contrast, the deficits that form the FI span many levels of 
functional, psychological and social aspects of health, allowing frailty 
to be measured across a broad spectrum of traits. These FI deficits are 
heterogeneous and vary in their underlying etiology.

Phenotypic work clearly indicates that the deficits included in 
the FI are not always strongly correlated and are driven by diverse 
biological mechanisms9–11. Therefore, their combination into a sin-
gle aggregate score is likely to obscure causal pathways of frailty. 
For example, previous work that applied principal component (PC) 
analysis to phenotypic data of FI deficits demonstrated that addi-
tional informative variance associated with frailty was captured 
when three clusters were modeled instead of one cluster12. Informa-
tion that is lost through aggregation could be identified by a more 
detailed genetic analysis. Recent advances in multivariate genomics, 
such as the development of genomic structural equation modeling 
(SEM)13, offer the opportunity to model the genetic basis of frailty at 
a multidimensional level.
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Fig. 1 | Path diagram of the standardized results for our bifactor model of 
frailty. All 30 frailty deficits load onto the general factor of frailty (large oval), 
which is orthogonal to factors 1–6 (that is, residual factors). The small circles 
represent the 30 measured frailty indicators (that is, genetic variance captured 
in the univariate GWAS for that phenotype), whereas the medium-size ovals 
represent latent factors (that is, unmeasured constructs representing genetic 
overlap (g) between the indicators that load onto them). Single-headed arrows 
represent a directional genetic correlation between a latent factor and an 
indicator (that is, factor loadings), whereas curved double-headed arrows 
represent inter-factor correlations between factors 1 to 6; the s.e. of the 
correlation coefficients is reported in the parentheses. ASI, pulse wave arterial 
stiffness index; BFP, body fat percentage; BMR, basal metabolic rate; CIG, 

number of cigarettes smoked per day; CON, unable to confide; CP, chest pain; 
DIS, long-standing illness, disability or infirmity; EYE, eye disorder or problem; 
FALL, number of falls in past year; FIN, financial difficulties; FRA, fracture in last 
5 years; GF, low fluid intelligence score; HGS, low hand grip strength; HL, age-
related hearing loss; ILL, number of non-cancer illnesses; INS, insomnia; LON, 
loneliness or isolation; LPA, physical inactivity; LSA, low social or leisure activity; 
LWS, not living with spouse or partner; MAP, mean arterial pressure; MDD,  
major depressive disorder; MOT, feelings of unenthusiasm or disinterest; OH, 
poor oral health; OHR, poorer overall health rating; PAIN, pain experienced in  
the past month; SOB, shortness of breath when walking on flat ground; TIR, 
tiredness or lethargy; WHZ, wheezing or whistling in chest in the past year;  
WP, slow walking pace.
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22 deficits in the Supplementary Note. As genomic SEM can model 
genetic overlap across participant samples with varying and unknown 
levels of participant sample overlap, including even mutually exclu-
sive participant samples, this allowed us to bring together the most 
well-powered genomic studies currently available for the 30 frailty 
deficits and produce estimates with the highest possible precision. 
Using a combination of exploratory and confirmatory factor analysis 
(CFA) (Methods), this modeling procedure yielded a bifactor model 
that provided a good fit to the data (comparative fit index (CFI) = 0.93; 
standardized root mean squared residual (SRMR) = 0.07; Fig. 1 and Sup-
plementary Table 3). This model included a general factor that indexed 
genetic overlap across all 30 deficits; therefore, it is conceptually similar 
to prior aggregate measures of frailty. Half of the frailty deficits only 
loaded on the general factor, indicating that the frailty-relevant genetic 
variance for these deficits was sufficiently captured by a single aggre-
gate factor. The fact that these deficits only loaded on the general fac-
tor is conceptually consistent with the broad psychological processes 
(for example, insomnia, lack of motivation or apathy, loneliness) and 
general aging-related outcomes (for example, age-related hearing loss, 
wheezing, pain) that they surveyed.

In addition, the model produced six residual group factors that 
were orthogonal (that is, uncorrelated) to the general factor, which 
were defined according to additional genetic overlap in subsets of 
frailty deficits. These six factors captured distinct, albeit intercor-
related, frailty pathways related to limited social support (factor 1), 
unhealthy lifestyle (factor 2), multimorbidity (factor 3), metabolic 
problems (factor 4), poorer cognition (factor 5) and disability (factor 6).  
We named these residual latent factors according to the frailty deficits 
that loaded onto them to provide a preliminary interpretation of what 
each latent factor might be representing (see the Supplementary Note 
for a description of this factor-naming procedure). These should not be 
interpreted as definitive descriptions of the pathways underlying them 
because there may be additional pathways related to that label that 
are captured by the general factor of frailty or by the unique (residual) 
variances of the individual frailty deficits.

Our remaining analyses sought to explore the risk pathways under-
pinning these six residual factors and evaluate their divergent valid-
ity and clinical utility by examining their ability to uniquely capture 
frailty-relevant pathways at increasingly granular levels of biological 
analysis.

Genetic overlap between frailty and aging-related outcomes
To validate whether the latent factors in the bifactor model reflected 
different aspects of frailty, we measured the level of genetic correla-
tion (rg) between each of the latent factors and 52 aging-related health 
outcomes and established frailty measures (Fig. 2 and Supplementary 
Tables 4 and 5). All P values were adjusted using false discovery rate 
(FDR) correction to account for multiple testing (herein provided 
as q-values). The general factor displayed highly positive genetic 
correlations with the FI (rg = 0.93, s.e. = 0.02, q = 9.1 × 10−298) and FP 
(rg = 0.83 (0.02), q = 9.1 × 10−298), indicating that the general factor 
closely approximates both of these frailty phenotypes, in line with 
expectations, given that this latent factor represents genetic overlap 
between all 30 included deficits. These findings were corroborated 
by the fact that all the latent factors except for factor 1 (limited social 
support) were associated with shorter parental lifespan (rg < −0.31, 
q < 3.2 × 10−6), reduced longevity (rg < −0.21, q < 0.01), increased risk of 
common aging-related infections (rg > 0.22, q < 0.01), hospitalization 
because of infection (rg > 0.15, q < 0.008) and heart failure (rg > 0.15, 
q < 0.005), all of which reflect key clinical correlates of frailty.

Importantly, our findings support the inclusion of additional 
subgroups when measuring frailty accumulation by highlighting 
divergent genetic correlations with aging-related health outcomes. 
For example, factor 5 (poorer cognition) was the only latent factor to 
demonstrate positive genetic correlations with Alzheimer’s disease 

(rg = 0.32, s.e. = 0.07, q = 2.26 × 10−5) and amyotrophic lateral sclero-
sis (rg = 0.38 (0.06), q = 1.07 × 10−8). Factor 5 also captured genetic 
variance associated with smaller gray matter volume (rg = −0.34 (0.05), 
q = 9.53 × 10−12) and lacunar stroke (rg = 0.25 (0.09), q = 9.80 × 10−3). By 
contrast, factor 2 (unhealthy lifestyle) demonstrated genetic correla-
tions with brain-related vascular changes, including increased white 
matter hyperintensities (rg = 0.21 (0.09), q = 0.04) and resting state 
fluctuation amplitudes (rg = 0.19 (0.08), q = 0.03), whereas factor 3 
(multimorbidity) was correlated with ischemic and lacunar stroke 
(rg = 0.45 (0.05), q = 6.21 × 10−18 and rg = 0.38 (0.09), q = 3.00 × 10−3), but 
not cerebrovascular markers. Finally, all the latent frailty factors dis-
played distinct patterns of genetic correlations with routinely collected 
blood and urinary biomarkers (Fig. 2), which may represent potential 
endophenotype profiles for these frailty subgroups. By definition, the 
identified relationships are independent of shared risk pathways cap-
tured by the general factor of frailty. It follows that our model of frailty 
has potential clinical utility for targeted prevention and therapeutic 
intervention in patients who present with elevated risk in a subgroup 
of frailty deficits.

Multivariate GWAS identifies 408 risk loci for frailty
We subsequently performed a multivariate GWAS of our frailty bifac-
tor model using genomic SEM to uncover genomic risk loci that were 
associated with each latent frailty factor (PBonferroni < 7.14 × 10−9). We 
pruned out any significantly heterogenous genetic signal (QSNP) from 
our GWAS results to ensure that we were only measuring genetic effects 
that were shared between the deficits that defined that particular latent 
factor (Methods). From this shared signal, we identified a total of 408 
genomic risk loci across the seven latent frailty factors (Fig. 3 and Sup-
plementary Tables 6–12). We compared results from our GWAS to the 
risk loci identified in previously published GWAS of FI20 (Supplementary 
Table 13) and FP21 (Supplementary Table 14). We regarded a locus as 
being fully replicated if the locus from the original GWAS study (defined 
as the genomic risk locus ± 100 kb) overlapped with a genomic risk 
locus in any of the latent factors (PGWAS < 5 × 10−8) or partially replicated 
if it demonstrated a nominally significant association with one of the 
latent factors (PBonferroni < 0.001 (that is, 0.05/47)). All the tested loci were 
replicated by at least one of our latent factors, ensuring that the direc-
tion of effect was also concordant across studies when aligned to the 
same reference allele (Supplementary Tables 13 and 14). We validated 
six of the FI loci and 21 of the FP loci with the residual factors (that is, 
factors 1–6) instead of the general factor, indicating that our model 
can comprehensively define subgroups within the frailty construct, 
which one aggregate measure overlooks. Furthermore, five of the FI 
loci and 15 of the FP loci were also significant for the single-nucleotide 
polymorphism (SNP)-level heterogeneity metric in the current analyses. 
As QSNP identifies SNPs that are probably deficit-specific or that show 
heterogeneous effects between the included frailty deficits, these 
findings indicate that existing aggregate frailty measures are sensitive 
to large effects driven by a single indicator that are not part of more 
general frailty pathways.

Frailty-associated gene expression and epigenetic changes
We completed a series of post-GWAS analyses to explore how the 
genetics underpinning each of the frailty latent factors may influence 
the underlying biology. We applied multi-marker analysis of genomic 
annotation (MAGMA) gene property analysis to test for enriched gene 
expression changes in 54 body tissues and stratified genomic SEM 
to test for enrichment in 146 functional annotations linked to gene 
expression and epigenetic changes in tissues and cell subtypes in the 
brain (Fig. 4 and Methods).

MAGMA gene property analysis showed significant enrichment 
in the brain and pituitary gland for all the latent frailty factors except 
for those underlying the multimorbidity (factor 3) and disability (fac-
tor 6) pathways (Fig. 4a). The only other tissues that demonstrated 
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significantly enriched changes in gene expression were the reproduc-
tive organs, whereby factor 2 (unhealthy lifestyle) showed significant 
gene expression changes in the testis, factor 3 (multimorbidity) showed 
significant changes in gene expression in the cervix and uterus, and fac-
tor 5 (poorer cognition) showed significant gene expression changes 
in the ovaries (Supplementary Table 15).

Stratified genomic SEM provided a more in-depth picture of 
enrichment in the brain (Supplementary Table 16). We found wide-
spread enrichment in gene expression and epigenetic changes through-
out brain regions in oligodendrocytes and neurons for the general 
factor of frailty. However, the widespread nature of this enrichment 
demonstrates that using an aggregate measure of frailty is less likely 
to provide a fine-tuned picture of the underlying mechanisms of frailty 

because of its generalized impact on brain function. In contrast, resid-
ual factors provided a more detailed understanding of the pathways 
implicated by different frailty deficits, which could present future 
therapeutic targets within the broad spectrum of frailty (Fig. 4b). For 
instance, factor 1 (limited social support) only showed significant gene 
expression changes in the dorsal striatum (caudate and putamen) 
and methylation changes in the substantia nigra, whereas factor 2 
(unhealthy lifestyle) showed enriched gene expression in the spinal 
cord but not any of the tested brain regions. In addition, factor 5 (poorer 
cognition) showed gene expression enrichment in excitatory prefrontal 
cortex neurons and oligodendrocyte precursor cells, as well as epige-
netic changes in the angular gyrus, cingulate gyrus, anterior caudate, 
dorsolateral prefrontal cortex, hippocampus and substantia nigra.
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Fig. 2 | Heatmap of the genetic correlations between aging-related health 
outcomes and each of the latent factors from the frailty bifactor model. 
Genetic correlations with a two-sided q < 0.05 are in black font. We used FDR 
correction to account for multiple testing. The blue shading represents a positive 

genetic correlation, whereas the red shading represents a negative genetic 
correlation. For visualization purposes, only health outcomes that demonstrated 
at least one q < 0.05 with one or more of the latent factors are included in this 
figure (full results can be found in Supplementary Table 5).
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Fig. 3 | Manhattan plots of the shared genetic signal for each of the latent 
factors in the frailty model. The x axis depicts the chromosomes and the y axis 
represents the two-sided −log10(P) of the association between each individual SNP 
and each latent factor. The closest gene to the lead SNP is annotated for the top 
loci of each latent factor. The dashed line denotes the genome-wide significance 

threshold adjusted for multiple testing using Bonferroni correction (that is, 
PBonferroni < 7.14 × 10−9). ̂N  is the expected sample size of each latent factor implied 
by the GWAS summary statistics for that factor, which is influenced by the power 
of the factor loadings of the indicators (that is, frailty deficits) that define it.
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Gene prioritization and pathway analysis
We used five methods to map potentially causal genes to each latent 
frailty factor to assess the biological pathways that might be associated 
with each frailty subgroup (Fig. 5a). These methods included map-
ping SNPs to genes based on their position, whether they were known 
expression quantitative trait loci (eQTLs) or if they were located in 
promoter regions known to regulate chromatin interactions (Sup-
plementary Tables 17–23). In addition, we performed a genome-wide 
gene-based test using MAGMA (Supplementary Tables 24–30) and 
applied summary-data-based Mendelian randomization (SMR) to iden-
tify SNPs that demonstrated evidence of having a pleiotropic effect on 
expression, splicing or methylation changes in gene function (Sup-
plementary Tables 31–37). We triangulated the results from these five 
gene mapping techniques and prioritized the most likely candidate 

genes based on whether they were mapped by three or more of the 
methods. This resulted in 1,195 genes being prioritized, which we took 
forward for pathway analysis (54 for the general factor; four for factor 
1 (limited social support); 20 for factor 2 (unhealthy lifestyle); 585 for 
factor 3 (multimorbidity); 194 for factor 4 (metabolic problems); 266 
for factor 5 (poorer cognition) and 72 for factor 6 (disability); Supple-
mentary Note). Using METASCAPE, we performed enrichment analysis 
to identify Gene Ontology and disease pathways that were significantly 
associated with the prioritized genes mapped to each latent factor22. 
As there can be extensive redundancy between gene sets, we combined 
highly correlated enriched pathways into clusters, named according to 
the Gene Ontology pathway that had the strongest enrichment with the 
latent frailty factors (Methods and Fig. 5b). As the general factor was 
orthogonal to the other latent frailty factors, we conducted pathway 
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Fig. 4 | Results from the MAGMA gene property analysis and stratified 
genomic SEM. a, The y axis denotes the one-sided −log10(P) of the enrichment 
between each latent frailty factor and body tissues from GTEx v.8 (only tissues 
with significant enrichment are displayed). The dashed line denotes the cutoff 
for nominal significance (that is, one-sided P < 0.05); the bars marked with an 
asterisk indicate tissues that remained significantly enriched with the latent 
frailty factor after adjusting for multiple testing using FDR correction (that is, 

one-sided q < 0.05). The full results are shown in Supplementary Table 15.  
b, Heatmaps of the enrichment values calculated using stratified genomic SEM 
to test for differences in gene expression and epigenetic marks associated with 
each latent frailty factor in a selection of brain-relevant tissues and cell types. 
Significant enrichment values that passed FDR correction for multiple testing are 
marked with an asterisk (that is, one-sided q < 0.05). Full results can be found in 
Supplementary Table 16.
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analysis separately for that factor but performed a combined analysis 
for factors 1–6 to account for the potential overlap in implicated gene 
pathways owing to the presence of inter-factor correlations between 
these latent residual factors.

Pathway analysis of the prioritized genes for the general fac-
tor identified only two significantly enriched disease pathways for 
intelligence and scoliosis (Supplementary Tables 38–40). In con-
trast, we found high levels of significant enrichment (that is, q < 0.05) 
for all residual latent frailty factors, except for factor 1 (Fig. 5 and 

Supplementary Tables 41–43). The most strongly enriched pathway 
cluster (lead Gene Ontology term = RNA polymerase I promoter 
opening) included multiple gene sets linked to known aging-related 
processes, including telomere function, amyloid fiber formation 
and oxidative stress, and was significantly enriched across factors 2 
(unhealthy lifestyle), 3 (multimorbidity), 5 (poorer cognition) and 
6 (disability). Other pervasive cross-factor enrichment implicated 
immune function, epigenetic regulation and cancer as key pathways 
involved in frailty pathogenesis. In addition to the shared enrichment 
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Fig. 5 | Overview of the gene prioritization pipeline and results from the 
pathway enrichment analysis for the residual frailty factors. a, Overview 
of the methods used to conduct gene prioritization and subsequent pathway 
analysis for the latent frailty factor GWAS results. b, Heatmaps of the results for 
the combined pathway enrichment analysis of the residual frailty factors (that 
is, factors 1–6). Top: the heatmap shows the results for the top 20 most enriched 
Gene Ontology pathway clusters. The displayed values represent the enrichment 
value for the most significant Gene Ontology term in each cluster (as named 

on the y axis). Bottom: the heatmap displays the results for the top 20 most 
significantly enriched disease pathways from the DisGeNET database. There 
were no significantly enriched pathways for factor 1 (limited social support) 
because only four genes (CTNND1, TMX2, MED19 and EGR3) were mapped to that 
latent factor. FDR correction was used to account for multiple testing; significant 
enrichment values are marked with an asterisk (that is, one-sided q < 0.05). GFR, 
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in aging-related pathways observed across the factors, we also found 
evidence for discriminant validity of frailty factors. For example, only 
factors 3 (multimorbidity) and 5 (poorer cognition) demonstrated 
significant enrichment for pathways linked to Alzheimer’s disease 
and general neurodegeneration. Factor 3 (multimorbidity) was also 
enriched in protein maturation and folding pathways, providing con-
sistent evidence that aspects of frailty related to multimorbidity and 
cognition may be more highly linked to dementia and neurodegenera-
tive pathways compared to other aspects of frailty. Factor 4 (metabolic 
problems) genes were enriched in gene sets linked to cell signaling 
(particularly the Rap1 pathways) and 16p11.2 distal deletion syndrome. 
This is a rare syndrome that results from the partial deletion of the short 
arm of chromosome 16, leading to symptoms including intellectual 
disability, developmental delay and autism spectrum disorder. This 
syndrome can be caused by unmasked recessive mutations in the 
CLN3 gene23, which was where the most significant risk locus for our 
frailty GWAS was located (lead SNP rs27741; factor 4 P = 1.09 × 10−35) 
(Fig. 3). Enrichment analysis of the disease pathways from the DisGeNET 
database further demonstrated that frailty factors display a distinct 
underlying biology. Factor 3 (multimorbidity) genes were strongly 
enriched in pathways linked to red blood cell and lipid biomarkers, 
whereas factors 2 (unhealthy lifestyle) and 6 (disability) genes were 
significantly enriched in cancer pathways, and additionally, in gout 
and arthritis pathways for factor 6.

Polygenic risk scores predict frailty in external cohorts
To validate latent frailty factors as phenotypes that capture 
frailty-specific variance, we created polygenic risk scores (PRSs) for 
each latent frailty factor and used regression models to test how well 
they predicted frailty and frailty-related outcomes in three external 
older adult cohorts (the Lothian Birth Cohort 1936 (LBC1936) (n = 1,005; 
mean age = 69.60), the English Longitudinal Study of Aging (ELSA) 
(n = 7,181, mean age = 68.45) and the Prospective Imaging Study of Aging 
(PISA) (n = 3,265, mean age = 60.34)) (Methods and Supplementary 
Note). To measure the cumulative predictive capacity of our frailty 
model, we also created a PRS phenotype that combined the polygenic 
signal of all seven frailty factors using multiple regression (herein 
referred to as multi-PRS). This allowed us to compare the performance 
of our overarching multivariate model in predicting frailty status rela-
tive to PRSs created from existing aggregate frailty GWAS measures 
(that is, the FI-PRS20 and FP-PRS21). The combined multi-PRS provided 
the strongest prediction of the FI in PISA and ELSA and was compara-
ble to the FI-PRS in LBC1936 (Fig. 6a and Supplementary Table 44). 
Furthermore, the individual PRS for each latent factor, except for the 
PRS for factor 1 (limited social support), were significantly associated 
with FI status in at least two of the three cohorts, indicating that these 
construct capture frailty-relevant genetic variance (Fig. 6b and Sup-
plementary Table 44).

To assess the influence of sex and age on the latent frailty fac-
tors, we split each of the latent factor PRS phenotypes into quintiles 
(Methods). None of the cohorts demonstrated significant associations 
between the PRS quintiles and sex. In contrast, significant associations 
between increasing age and higher PRS quintiles were observed for the 
F2-PRS (F = 2.71, P = 2.86 × 10−2), F3-PRS (F = 3.55, P = 6.78 × 10−3), GF-PRS 
(F = 2.88, P = 2.14 × 10−2) and the multi-PRS (F = 4.90, P = 6.00 × 10−4) in 
ELSA, the F4-PRS (F = 2.46, P = 4.36 × 10−2) in PISA and the multi-PRS 
(F = 3.29, P = 1.09 × 10−2) in LBC1936.

We additionally measured the association of the latent frailty PRSs 
with other frailty-related health outcomes, which helped provide a 
more detailed picture of how these frailty subgroupings may differ-
entially affect aging processes (Supplementary Table 45 and Supple-
mentary Note). We found that the PRS for factor 5 (poorer cognition) 
and the multi-PRS significantly predicted lower cognitive ability in 
LBC1936 (β = −0.68, s.e. = 0.10, q = 4.03 × 10−9 and β = −0.59; s.e. = 0.10, 
q = 4.63 × 10−7), but not cognitive change. The PRS for factor 5 (poorer 

cognition) was also significantly associated with reduced visuospatial 
reasoning in PISA (β = −0.11, s.e. = 0.03, q = 5.64 × 10−4).

We used elastic net regression to jointly model the PRS for the 
seven frailty factors so that we could rank the order that each con-
tributed to predicting frailty status (Fig. 6c–e and Supplementary 
Table 46). The general factor of frailty was ranked as the highest con-
tributor to FI prediction in all three tested cohorts. We also used elastic 
net regression to rank the performance of the full latent frailty model 
(multi-PRS) against the previously derived aggregate frailty GWAS 
measures (FI-PRS and FP-PRS). We found that the multi-PRS outper-
formed the FI-PRS and FP-PRS when predicting FI status in ELSA and 
PISA (Fig. 6f–h and Supplementary Table 47). Sensitivity analyses that 
grouped samples according to age demonstrated that the predic-
tive contributions of the latent factor PRS remained consistent in the 
older age groups (Supplementary Note). Together, these findings vali-
dated our model as representing a new genetic measure that captures 
frailty-relevant pathways, which explained more genetic variance than 
aggregate GWAS measures used in the field so far.

Discussion
Here we report a genomic factor analysis of frailty. We introduce seven 
new latent constructs of the shared genetics between 30 frailty deficits, 
including a general factor of frailty and six additional residual factors 
representing genetic overlap between distinct subsets of frailty deficits. 
Qualitatively, the six residual factors represent issues related to limited 
social support, unhealthy lifestyle, multimorbidity, metabolic prob-
lems, poorer cognition and disability. We identified 408 genomic risk 
loci for these latent constructs that are enriched for pathways related 
to accelerated aging, including epigenetic modifications and immune 
regulation. This demonstrates a substantial advance in genomic locus 
discovery for frailty compared to prior GWAS of aggregate frailty meas-
ures, which only identified 14 genomic loci for the FI20 and 37 genomic 
loci for the FP21. We further validated the latent constructs as being 
relevant to frailty and related health outcomes at multiple levels of 
biology and in the prediction of frailty status in external data.

Our findings support previous phenotypic studies that highlight 
the merit, relative to single aggregate scores, of using data reduction 
methods to improve our understanding of frailty etiology12,24,25. How-
ever, by taking a multivariate genomic approach, we were able to inte-
grate theoretical knowledge with biological evidence to better define 
the underlying pathways of frailty and to differentiate generalized 
pathogenic pathways from more nuanced pathways that are specific 
to a subset of deficits, both of which are fundamental to understanding 
this complex clinical construct. For example, our genetic correlation 
and pathway analyses implicate immune function and epigenetic 
modifications as being key drivers of frailty pathogenesis across mul-
tiple deficit groupings. This is in line with findings linking frailty and 
elevated C-reactive protein levels, red blood cell distribution width and 
white blood cell count26–29. Our frailty factors were also significantly 
genetically correlated with health complications associated with infec-
tion, including hospitalization and sepsis. The associations between 
frailty and common viral infections, such as pneumonia30, coronavirus 
disease 201931 and urinary tract infections32 are well documented. 
Furthermore, our findings consistently demonstrated evidence for 
widespread epigenetic changes in frailty, supporting previous work 
suggesting that epigenetic biomarkers, such as epigenetic clocks33 or 
epigenetic risk scores34, could be effective predictors of frailty. At the 
gene level, our analyses prioritized potential causal genes related to 
distinct frailty subgroups that may help to refine our understanding of 
frailty biology, even in scenarios where a gene has widespread effects. 
For example, the MEF2C gene has an important role in cardiovascular, 
neurological and musculoskeletal development, as well as metabolic 
regulation35–37. However, MEF2C only mapped to the poorer cognition 
latent factor (factor 5) in our study, indicating that its role on cognitive 
function38 seems to be the key pathway related to frailty.
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The seven frailty factors displayed discriminant validity across 
multiple levels of biological analysis, indicating that existing aggregate 
measures of frailty are likely to miss clinically relevant distinctions. 
For example, we found that the poorer cognition factor (factor 5) was 
the only latent frailty factor that displayed significant genetic overlap 

with Alzheimer’s disease. In addition, our GWAS and gene prioritiza-
tion findings implicated SPI1 as a key locus for factor 5, which is a 
well-replicated Alzheimer’s disease risk locus39–41. Interestingly, factor 
5 had similar factor loadings from lower fluid intelligence and poor 
self-reported overall health rating, indicating that subjective health 
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reports, as well as cognitive testing, could be indicative of subsequent 
heightened Alzheimer’s disease risk in individuals who present with 
these frailty deficits. In fact, subjective cognitive decline has been 
widely supported as a potential early marker of cognitive impair-
ment42. The other loading onto this latent factor was slow walking 
pace, which is independently associated with heightened dementia 
risk43. In addition, slow gait and subjective cognitive decline are used 
to measure motoric cognitive risk, a syndrome strongly associated 
with subsequent dementia44.

Furthermore, our genetic correlation found that the multimorbid-
ity factor (defined by the number of illnesses and high mean arterial 
pressure) is a strong driver of frailty over and above the variance cap-
tured by a general aggregate measure of all frailty deficits. Prevalence 
of multimorbidity and associated polypharmacy is a global public 
health concern, with rates as high as 90% in certain populations45. This 
latent factor produced by far the highest number of genomic risk loci 
and PRS analyses demonstrated that its predictive power was con-
sistently strong across the external cohorts. Gene prioritization and 
pathway analysis indicated enrichment in a wide array of aging-related 
pathways, including VEGFA signaling, which was recently identified 
in a multivariate GWAS of aging46 and has been shown to be important 
in longevity47. Taken together, our findings suggest that this latent 
factor includes a broad set of disease-related biological pathways that 
are associated with the most common diseases found in populations 
that lead to a heightened risk for developing frailty and accelerated 
aging. This provides empirical support for the ‘geroscience hypoth-
esis’, which theorizes that manipulating aging physiology will prevent 
associated diseases48.

Our findings should be viewed in light of several limitations. We 
did not explore the impact of sex differences, which are important 
in aging as evidenced by significant prevalence differences in frailty 
across all age groups49. Our tissue enrichment analyses alluded to this 
with significant enrichment identified for the sex-specific reproduc-
tive organs. However, sex chromosomes are often excluded from 
GWAS results50, and multivariate methods designed for analyzing 
this type of data are currently lacking. As data and methods become 
available, future work should examine the influence of genetic vari-
ation in the sex chromosomes on the sex-specific prevalence and 
clinical manifestations of frailty. Furthermore, our analyses were 
restricted to samples of European genetic ancestry as the meth-
ods rely on linkage disequilibrium information that can vary across 
ancestral populations. Unfortunately, despite advances in collecting 
genomic data from multiple populations, it was not possible to iden-
tify publicly available GWAS data for the frailty deficits to conduct a 
multi-ancestry analysis, but this should be a major focus in the future 
to make these results more generalizable globally. Finally, the labels 
of the six residual latent factors in our model should be interpreted 
as non-definitive, theoretical approximations of the genetic variance 
that underpins them. This is an inherent feature of SEM approaches 
more generally as the shared variance captured by a latent factor is, 
by design, representative of an unmeasured construct. Therefore, 
we had to combine our empirical results with theoretical reasoning 
to determine what shared processes we believed these latent factors 
are capturing (see the Supplementary Note for justification of the 
factor names used).

In conclusion, we have introduced a genomic latent model of frailty 
and demonstrated the added potential of modeling frailty as multiple 
latent factors, representing both a generalized pathway of frailty and 
distinct subgroups of deficits that share an additional underlying 
biology. This can be contrasted with previous studies that have relied 
solely on aggregate measures of frailty. This more nuanced model 
offers unique etiological insights into frailty and may aid in refining risk 
stratification of patients. Our genomic model of frailty may also help to 
develop new preventive and therapeutic strategies that minimize the 
broad range of adverse frailty-related health outcomes.
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Methods
Ethics
Ethical approval was not required for most of the analyses in this study 
because they used publicly available summary data only. However, 
for the PRS analyses that required access to individual-level data, we 
received ethical approval from the relevant study boards for each 
external cohort (Supplementary Note).

Phenotype selection
Phenotypes were selected based on the deficits described by the FI51. 
We specifically included traits that reflected systemic pathways and 
health behaviors (for example, number of diagnosed illnesses) as 
opposed to specific clinical diagnoses (for example, type 2 diabetes) 
to model genetic variance for general aspects of frailty rather than 
disease-specific pathways. Traits were included if they had GWAS sum-
mary statistics that were publicly available in a sample of 10,000 or 
more individuals of European ancestry. Analyses were restricted to 
European ancestry because the methods used to estimate genetic 
overlap rely on ancestry-specific patterns of linkage disequilibrium 
and GWAS of sufficient sample size in other ancestry groups are not yet 
available across all the frailty traits. We prioritized the use of GWAS data 
from consortium-based studies because these tend to pool the largest 
sample sizes and have more rigorous phenotypic definitions15–19,52–57. 
When consortia data were not available, we used GWAS summary 
statistics downloaded from the Pan-UK Biobank (https://pan.ukbb.
broadinstitute.org). Supplementary Table 1 summarizes the 52 traits 
included in our initial analysis. The effect estimates for each trait were 
formatted in a direction that reflected the ‘risk-inducing’ phenotype 
for frailty.

We initially conducted multivariable linkage disequilibrium score 
regression (LDSC) using the default parameters in the GenomicSEM R 
package to estimate the SNP-based heritability (h2

SNP) of each deficit 
phenotype and the bivariate genetic correlations (rg) between each 
pair of frailty deficits13. We used these results to guide the selection of 
frailty deficits that could be reliably included in a multivariate latent 
model (Supplementary Note). This resulted in a final list of 30 traits 
that were brought forward for all subsequent analyses (Supplementary 
Table 1). An FI constructed with 30 or more deficits has been shown to 
sufficiently capture frailty8.

Genomic factor analysis
Exploratory factor analysis. As the latent pattern of the shared genetic 
architecture between frailty deficits had not been assessed previously, 
we initially ran an exploratory factor analysis (EFA) using the stats 
R package to identify a plausible latent structure that describes the 
genetic overlap across the included frailty deficits. To avoid model 
overfitting, we used the genetic covariance matrix estimated in odd 
autosomes as the input to the EFA and the genetic covariance matrix 
estimated in even autosomes as the input for the subsequent CFA. We 
used the Kaiser rule58 and the number of optimal coordinates test59 
to determine the number of factors to extract in the EFA; both sug-
gested that seven factors were appropriate. We additionally extracted a 
six-factor model (Supplementary Table 48) as there was a high number 
of cross-loadings in the seven-factor specification, indicating that a 
more parsimonious structure may be appropriate, and the fifth factor 
in the seven-factor model only captured genetic variance related to 
mean arterial pressure (Supplementary Table 49). We applied promax 
factor rotation, which allows for inter-factor correlations.

Confirmatory factor analysis. We then conducted a CFA using the 
diagonally weighted least squares method and the genetic covariance 
matrix from the even autosomes as input. The CFA model was guided 
using the EFA results, where a frailty deficit was specified to load on a 
factor when standardized loadings were 0.30 or greater. The six-factor 
(CFI = 0.92; SRMR = 0.07) and seven-factor model specification 

(CFI = 0.89; SRMR = 0.07) both provided a good fit to the even auto-
some data (Supplementary Table 50). The six-factor model was selected 
over the seven-factor model because it (1) provided improved fit to the 
data while offering a more parsimonious representation of the data; 
(2) produced more theoretically interpretable factors of latent genetic 
architecture between distinct groups of multiple frailty deficits; and (3) 
continued to provide good fit to the data in all autosomes (CFI = 0.92; 
SRMR = 0.06) (Supplementary Table 51).

Bifactor model. While the six-factor model produced theoretically 
meaningful latent factors, the first latent factor displayed strong fac-
tor loadings for 16 of the 30 frailty deficits and the model included 
pervasive cross-loadings of frailty deficits on multiple factors. This 
indicated that a bifactor model was an appropriate way to capture 
the general frailty pathways across all included deficits, as well as the 
genetic variance specific to distinct subsets of deficits.

Therefore, we estimated the fit of a bifactor model that included 
loadings for all 30 frailty deficits onto a general factor of frailty (general 
factor), in addition to the loadings on the six latent factors from the CFA 
model (factors 1–6). A key benefit to this approach is that the general 
factor is orthogonal (that is, uncorrelated) to the additional residual 
group factors, which enabled us to interpret the general factor as gen-
eral genetic pathways of frailty that are distinct from the more focused 
subsets of genetic variance that underlie potential subgroups within 
the frailty spectrum. A bifactor model thereby provided a more direct 
test of our hypothesis that aggregate scores of frailty (for example, 
the FI and FP) miss unique risk pathways that are only shared between 
smaller subsets of frailty deficits.

Owing to the inclusion of the general factor, some of the original 
factor loadings for the six CFA factors became nonsignificant. We 
iteratively removed any loadings from factors 1–6 that were less than 
0.30 to ensure that we only retained stable loadings in the final model 
specification. In cases where an indicator displayed loadings above our 
cutoff for multiple residual factors, we retained these cross-loadings 
because a previous simulation study found that omitting substantial 
cross-loadings from a bifactor model based on a prior CFA model can 
upwardly bias the general factor loadings and downwardly bias residual 
group factor loadings, which cannot be picked up using standard model 
fit measures60.

We allowed the residual group factors (factors 1–6) to be cor-
related (but orthogonal to the general factor). This form of bifactor 
model is known as a bifactor (S-1) model and is sufficiently identified 
if a subset of the indicators only load onto the bifactor (in our case 50% 
of the frailty deficits solely loaded onto the bifactor)61. To ensure the 
model was locally identified, factor loadings were constrained to be 
equal when there were only two indicators that loaded onto a factor 
(that is, for factors 1 and 3). The final bifactor (S-1) model (Fig. 1 and 
Supplementary Table 3) continued to provide good fit to the data 
(CFI = 0.93; SRMR = 0.07) and was brought forward for all subsequent 
analyses.

Genetic correlations with related health traits
Frailty is known to increase the risk of many adverse health outcomes, 
but it is unclear whether this is because of shared genetics between 
the more general frailty pathways or whether some outcomes are only 
associated with certain deficits in the frailty state. Furthermore, as this 
represented the first time that frailty has been measured in this latent 
framework, we wanted to validate that our factors reflected frailty. 
Therefore, we used genomic SEM to calculate the genetic correlations 
between 52 aging-related health outcomes and existing frailty pheno-
types and each of the latent frailty factors (Supplementary Tables 4 
and 5)20,21,62–81. We used the same quality control procedures on the 
GWAS summary statistics for these outcomes as described for the 
main frailty deficits (Supplementary Note) and used an FDR-corrected 
q < 0.05 threshold to correct for multiple testing. However, in the case 
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of pneumonia, there were no prior available GWAS summary statistics 
with an SNP-based heritability estimate high enough to be included 
in the LDSC. Therefore, we conducted a fixed-effect meta-analysis 
using the METAL software, which included GWAS summary statistics 
data from the Pan-UK Biobank (https://pan.ukbb.broadinstitute.org) 
(ncases = 14,054 and ncontrols = 405,999) and FinnGen release 10 (https://
r10.finngen.fi/) (ncases = 63,377 and ncontrols = 348,804). This resulted 
in a total GWAS sample of 832,234 individuals (ncases = 77,431 and  
ncontrols = 754,803), which produced a reasonable SNP-based herit
ability for LDSC (Supplementary Table 4; z-statistic = 4.1).

Multivariate GWAS of latent frailty factors
GWAS estimation. We performed a multivariate GWAS within the 
GenomicSEM R package that estimated the individual SNP associations 
with each of the latent factors in our bifactor (S-1) model. After data 
standardization (Supplementary Note), 5,849,452 SNPs were included 
in our multivariate GWAS. We fixed the measurement model (that is, 
the genome-wide factor loadings and factor correlations) for all SNPs. 
This improved computational tractability and model interpretability 
as the SNP-specific estimates were scaled according to the same meas-
urement model across all SNPs (as opposed to the entire model being 
reestimated for each SNP). We removed any SNPs that required a high 
level of smoothing (that is, z-statistic change before and after smooth-
ing greater than 1.96) or that produced lavaan warnings for negative 
observed variable or latent variable variances or nonpositive definite 
covariance matrices (293 SNPs removed in total).

QSNP heterogeneity index. As described previously, not all the genetic 
signal captured in the latent factor GWAS results represents genuinely 
shared genetic variance. For example, a strong signal from a single 
indicator (for example, the FTO locus for body fat percentage) can 
lead to false positives if not properly accounted for13. Likewise, some 
of the nonsignificant genetic signal in the multivariate GWAS results 
may represent areas of the genome that have highly heterogenous 
magnitudes and directions of effect on the different univariate indica-
tors13. For this reason, it is necessary to calculate the QSNP heterogeneity 
statistics for each SNP, which reflects a χ2-distributed statistic that is 
higher for SNPs whose effects deviate strongly from the patterning of 
effects implied by the factor model.

As part of the current project, we introduced and validated a more 
computationally efficient way of calculating QSNP using a closed-form 
estimation method. While the prior model comparison formulation 
of QSNP required estimating a series of follow-up models to calculate 
the heterogeneity statistic13, our new formulation was automatically 
calculated for each factor predicted by an SNP in the model. This 
change thereby greatly reduced the runtime of our analysis. The new 
closed-form QSNP equation starts by calculating the residual covariance 
matrix for the subset of the matrix that reflects the SNP-phenotype 
covariances for the phenotypes that load on a given factor (RSNP) as:

RSNP = SSNP −∑θSNP (1)

where SSNP is the vector of SNP-phenotype covariances and ∑θSNP  
reflects the model-implied SNP-phenotype covariances. These 
model-implied estimates reflect the product of the estimated SNP 
effect on a given factor and the factor loadings for each trait. The preci-
sion of those SNP-phenotype estimates is indexed by taking the eigen 
decomposition of the portion of the sampling covariance matrix (V) 
that indexes those SNP-phenotype effects (VSNP):

VSNP = (P1P0) (
E 0

0 0
) (

P′1
P′0

) (2)

where P1 is the matrix of PCs (eigenvectors) of VSNP, P0 is the null space 
of VSNP and E is a diagonal matrix of the nonzero eigenvalues of VSNP. 

These eigenvalues and eigenvectors can then be used to weight the 
residual covariance matrix of the SNP-phenotype estimates to obtain 
a χ2-distributed test statistic given as:

QSNP (d.f.) ∼ RSNP′P1E−1P1′RSNP (3)

where d.f. reflects the degrees of freedom, which will be one less than 
the number of indicators for the factor. This equation is iteratively 
applied for each factor that is predicted by an SNP, such that a separate 
RSNP, VSNP and factor-specific QSNP are produced.

Via simulation, we demonstrated that this new closed-form 
approach continues to produce a χ2-distributed statistic that is sta-
tistically equivalent to the previously described model comparison 
formulation of QSNP. We used the simulateData function in the lavaan 
R package to simulate data for three different factor models each 
with 50,000 observations for 1,000 SNPs. We tested a 2-factor model 
with 3 indicators on each factor (2 d.f.), a 2-factor model with 4 indica-
tors on each factor (3 d.f.) and a 2-factor model with 6 indicators on 
each factor (5 d.f.). We confirmed across all three examples that the 
closed-form method remained χ2-distributed and that they did not 
differ significantly from the estimates calculated using the previous 
model comparison method in terms of the mean QSNP (Supplementary 
Note). In addition, the closed-form method consistently demonstrated 
a well-calibrated type 1 error rate (P < 0.05) (Supplementary Note).

For our empirical frailty application, we pruned out the QSNP 
significant signal from our GWAS summary statistics for each latent 
frailty factor to ensure that we only measured shared genetic vari-
ance operating via each latent factor in our subsequent post-GWAS 
analyses. We did this by removing SNPs that had a Bonferroni-corrected 
QSNP P < 7.14 × 10−9 (that is, 5 × 10−8/7), and any SNPs that were within a 
1-Mb window upstream or downstream of this location to ensure that 
variants that were in linkage disequilibrium with these heterogenous 
regions were removed.

Once the QSNP signal had been pruned from the latent factor sum-
mary statistics, we used the method developed by Mallard et al.82 to 
calculate the expected sample size ( ̂N) of each latent factor. This value 
quantifies the amount of error-free genetic variance being captured 
by each latent factor, so it also acts as an indicator of how well powered 
each latent factor is in the model.

Identification of genomic risk loci for latent frailty factors. We used 
FUMA v.1.5.2 to identify genomic risk loci for each latent factor in our 
model83. We used a Bonferroni-corrected genome-wide significance 
threshold of P < 7.14 × 10−9 (that is, 5 × 10−8/7 factors) to identify sig-
nificant SNPs in our pruned GWAS summary statistics for each latent 
factor (that is, QSNP-significant variants were removed). A genomic risk 
locus was defined as the region around a genome-wide significant SNP 
that included all SNPs that were in linkage disequilibrium (r2 ≥ 0.6) with 
that variant based on the linkage disequilibrium patterns in the 1000 
Genomes Project Phase 3 European ancestry reference genome83. If 
there were additional independently significant SNPs in linkage dis-
equilibrium with the lead SNP (r2 ≥ 0.1) or if loci were located within 
250 kb of one another, these were merged into a single locus83.

Stratified genomic SEM
As frailty has been consistently linked to increased risk of poorer brain 
health and dementia, which represents a key burden on health services 
in aging populations8, we explored whether there was evidence for 
brain-relevant functional enrichment in the genetic variance captured 
by our latent frailty factors. We applied stratified genomic SEM84 to 
test whether there was evidence for enrichment in functional annota-
tions (groups of genetic variants combined due to having a shared 
biological characteristic) that are known to influence tissue-specific 
gene expression in different brain regions, histone modifications, 
neuronal cell types or the interaction between these neuronal cell types 
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and protein-truncating variant-intolerant genes. We used previously 
constructed functional annotations based on data from the 1000 
Genomes Project Phase 3 Baseline LD v.2.2 (ref. 85), Genotype-Tissue 
Expression (GTEx)86, DEPICT87, Roadmap Epigenetics Project88 and 
the Genome Aggregation Database89, which consisted of a total of 172 
functional annotations. This included five randomly selected non-brain 
control regions for the gene expression and histone modifications90.

We performed multivariable stratified LDSC to estimate the 
zero-order genetic covariance matrices and the corresponding sam-
pling covariance matrices that were partitioned across the genomic 
regions of each functional annotation using the s_ldsc function in the 
GenomicSEM R package84,85. We subsequently used these matrices 
as the input data to the enrich function to calculate an enrichment 
ratio for the genetic variance captured in each latent factor in our 
bifactor model for each functional annotation91. We removed 26 
functional annotations from our analyses because of high degrees of 
smoothing (defined as a z-score difference greater than 1.96 before 
and after smoothing), as this indicates low power to detect meaning-
ful enrichment90. This resulted in 146 functional annotations being 
retained in our analyses. We used a q < 0.05 threshold to account for 
multiple testing.

Gene mapping and pathway analysis
Gene mapping. To explore the biological implications of the genomic 
risk loci underlying each latent frailty factor, we applied five comple-
mentary methods to map each locus to potentially causal genes, that is, 
positional mapping, eQTL mapping, chromatin interaction mapping, 
MAGMA and multi-SNP SMR (SMR-multi). We used the SNP2GENE 
function in FUMA (v.1.5.2)83 to functionally annotate candidate SNPs 
and map potentially causal genes to each locus based on positional, 
eQTL and chromatin interaction information (Supplementary Note).

We used MAGMA (v.1.08)92 to conduct a gene-based analysis that 
identified genes that were significantly associated with each latent fac-
tor. Any measured SNPs that were located in one of the protein-coding 
genes in the Ensembl database (excluding the major histocompatibility 
complex region) were analyzed. We used the 1000 Genomes Project 
Phase 3 European dataset as our linkage disequilibrium reference panel 
and applied a Bonferroni correction for the number of genes tested in 
each latent factor GWAS83. Using gene expression data from GTEx v.8 
for 54 body tissues93, we also used MAGMA to perform a gene property 
analysis to ascertain whether the genes significantly associated with 
the latent factor in the gene-based test were more likely to produce 
gene expression changes in particular body tissues94.

Finally, we applied SMR-multi to prioritize genes for each latent 
frailty factor by identifying SNP-outcome (that is, variant-frailty) 
associations that demonstrated strong evidence for being driven 
by pleiotropic effects on gene expression (eQTLs), splicing ratios 
(sQTLs) or methylation status (mQTLs)95,96. Mendelian randomization 
is a well-established method used to measure the causal influence of 
an exposure on an outcome using genetic variants as an instrumental 
variable. For our application of SMR, exposure reflected different 
measures of gene function (expression, splicing or methylation) and 
the outcome reflected the different latent frailty deficits identified in 
genomic SEM (Supplementary Note).

Gene prioritization and pathway analysis. To better understand the 
underlying biological pathways of each latent frailty factor, we con-
ducted pathway analysis using the genes that had been prioritized by 
the aforementioned gene mapping analyses as input. However, as not 
all genes that are mapped to risk loci represent truly causal genes, we 
triangulated our results to only include genes that presented sustained 
evidence for being a potential causal candidate for each latent factor. 
We defined this as any gene that was mapped by three or more of our 
gene mapping methods (that is, positional mapping, eQTL mapping, 
chromatin interaction mapping, MAGMA or SMR-multi). We used 

METASCAPE22 to perform a pathway enrichment analysis to identify 
gene sets that were significantly overrepresented in the prioritized 
genes for each latent factor (Supplementary Note).

Polygenic risk scores
Polygenic risk score construction. To externally validate our frailty 
latent factors, we constructed PRS of each latent frailty factor and tested 
whether they predicted frailty and related health outcomes in three 
external cohort datasets, including LBC1936, ELSA and PISA (see Supple-
mentary Note for the sample descriptions). We used the GWAS summary 
statistics of the shared genetic signal for each of the latent frailty factors 
(that is, the summary statistics that had removed a significantly hetero-
geneous signal), as well as publicly available GWAS summary statistics 
from previously published studies of aggregate measures for the FI20 and 
FP21 to construct a separate PRS for each of these predictor phenotypes. 
This enabled us to compare the prediction of the latent frailty factors 
with routinely used aggregate frailty measures. We performed routine 
quality control on each of the datasets, including aligning the effect and 
non-effect alleles to ensure that the direction of effect was concordant 
across analyses. We removed SNPs with a minor allele frequency of less 
than 0.01, as well as duplicate and ambiguous SNPs.

After quality control, PRS were calculated for the individuals in 
each of the three cohorts using SBayesR. We followed default proce-
dures described in detail by the original method developers97. Briefly, 
SBayesR is a Bayesian-based method that estimates joint SNP effects 
across the genome using multiple linear regression while assuming a 
finite mixture of normally distributed priors97.

Prediction of frailty and related phenotypes in the external cohorts. 
We subsequently performed a series of analyses to explore how well the 
latent frailty factors predicted routinely measured frailty phenotypes 
and related traits in external data. First, we used linear regression mod-
els to assess how well each individual frailty latent factor PRS predicted 
the FI in LBC1936 (based on 30 deficits), ELSA (based on 62 deficits) and 
PISA (based on 69 deficits), and logistic regression models to measure 
how well they each predicted the FP in LBC1936 (Supplementary Note 
and Supplementary Tables 52–54). As the latent frailty factors each 
represented distinct genetic variance that can contribute to frailty, 
we also used multiple regression to calculate a PRS of the combined 
scores for all seven latent factors (that is, multi-PRS). Finally, to enable 
us to compare the performance of the latent factor PRS with previously 
published frailty GWAS aggregate measures, we also tested how well 
the FI GWAS PRS (FI-PRS) and the FP GWAS PRS (FP-PRS) predicted the 
same frailty outcomes in each dataset. All models included age, sex and 
ancestry PCs (for ELSA and PISA, we used ten PCs and for LBC1936 we 
used four PCs) as covariates. These models allowed us to calculate the 
amount of incremental phenotypic variance explained (R2) by each PRS, 
which was calculated by subtracting the covariate-only model R2 from 
the R2 of the full PRS and covariate model98.

To facilitate subgroup analyses examining the effects of sex and 
age, we categorized each standardized latent factor PRS variable into 
quintiles. Quintiles were created by dividing the distribution of each 
PRS into five equal groups based on quantiles (20th, 40th, 60th, 80th 
and 100th percentiles) using the cut function in R. This ensured that 
each quintile represented approximately 20% of the sample, with 
quintile 1 containing the lowest PRS values and quintile 5 containing the 
highest PRS values. We used χ2 tests to assess the association between 
the PRS quintiles and sex, and ANOVA tests to assess whether mean age 
differed across PRS quintiles.

To assess the association of the latent factor PRS with frailty-related 
health outcomes, we also conducted regression analyses to test the 
association of each frailty PRS with cognitive ability (LBC1936), cog-
nitive change (LBC1936), dementia (LBC1936), motoric cognitive risk 
(LBC1936), mortality (LBC1936), stroke (LBC1936 and PISA), cognition 
and memory problems (PISA) (Supplementary Note).
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Elastic net regression to rank performance of frailty PRS. Finally, as 
conventional linear regression models can be upwardly biased because 
of model overfitting, we performed elastic net regularized regression 
models in all three cohorts to rank the polygenic contributions to frailty 
while minimizing bias from model overfitting and multicollinearity 
between predictors99. This method allows highly genetically correlated 
variables to be grouped; the final coefficients returned in the model 
allow the predictors to be ranked according to their contribution of 
prediction to the outcome99. We used elastic net regression because it 
combines the strengths of other commonly used prediction methods. 
For example, ridge regression shrinks coefficients but does not per-
form feature selection, whereas least absolute shrinkage and selection 
operator regression performs feature selection but may miss important 
predictors when variables are correlated. In contrast, elastic net regres-
sion performs both shrinkage and feature selection to identify the 
most important predictors, while also managing multicollinearity100. 
Previous PRS studies demonstrated the usefulness of using elastic 
net regression modeling when identifying relevant predictors101–103.

We ran an initial elastic net model predicting the FI in each cohort 
using the seven individual latent frailty factor PRSs and covariates 
(age, sex and ancestry PCs) as predictors to rank the latent factors in 
order of their strength in predicting frailty. We then performed elastic 
net regression that included the multi-PRS, FI-PRS and FP-PRS and 
covariates (age, sex and ancestry PCs) to rank the prediction of the 
different genetic measures of frailty (that is, multiple latent factors 
versus aggregate measures for the FI and FP).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The latent frailty factor and pneumonia GWAS summary statistics cre-
ated in this study are available at the GWAS Catalog (www.ebi.ac.uk/
gwas/; accession nos. GCST90624046–GCST90624053). The frailty 
PRS created in this study are available at the PGS Catalog (www.pgscata-
log.org; accession nos. PGS005221–PGS005229). Individual-level data 
used for our PRS analyses can be accessed upon reasonable request 
from the relevant cohorts: LBC1936, PISA and ELSA. The univariate 
GWAS summary statistics used for our frailty model and the exter-
nal health outcomes are available via the citations outlined in Sup-
plementary Tables 1 and 4, respectively. The linkage disequilibrium 
scores and weights, HapMap3 SNPs and 1000 Genomes Project refer-
ence file for genomic SEM are available to download at https://utexas.
app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v; the functional 
annotations for conducting the stratified genomic SEM are available 
via GitHub at https://github.com/genomicsem/genomicsem/wiki/
6.-stratified-genomic-sem. The datasets used for positional, eQTL 
and chromatin interaction mapping and the MAGMA analyses are 
available at the online platform FUMA (https://fuma.ctglab.nl/); the 
preprocessed eQTL, sQTL and mQTL data for conducting SMR are 
available for download at https://yanglab.westlake.edu.cn/software/
smr/#DataResource. The databases used for the pathway analysis are 
available via the online platform METASCAPE at https://metascape.
org/gp/index.html#/main/step1.

Code availability
The code was developed using publicly available software available via 
the following links: R v.4.4.2, www.r-project.org/; genomic SEM v0.0.5 
(including our new QSNP extension), https://github.com/genomicsem/
genomicsem; METAL release 2020-05-05, https://genome.sph.umich.
edu/wiki/metal; FUMA GWAS v.1.5.2, https://fuma.ctglab.nl; SMR 
v.1.3.2, https://yanglab.westlake.edu.cn/software/smr/; METASCAPE 
v.3.5.20250101, https://metascape.org/gp/index.html#/main/step1; 
lavaan R package v.0.6-19, https://lavaan.ugent.be/; MungeSumstats 

R package v.1.14.1, https://github.com/neurogenomics/mungesum-
stats; MAGMA v.1.08, https://cncr.nl/research/magma/; stats R pack-
age v.4.4.2, https://stat.ethz.ch/R-manual/R-devel/library/stats/
html/00Index.html; and SBayesR v.2.0, https://cnsgenomics.com/
software/gctb/#Overview. The specific custom code for the analy-
ses in this study is publicly available via GitHub at https://github.
com/IsyFoote/Frailty-Multivariate-GWAS and Zenodo at https://doi.
org/10.5281/zenodo.15654248 (ref. 104). The code used to create the 
latent growth curve models of cognitive ability and cognitive change 
in LBC1936 can be found at https://lothianbirthcohorts.github.io/
longitudinal-g-models/longitudinal_g_models.
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Software and code
Policy information about availability of computer code

Data collection No data collection was completed for this study.

Data analysis This code was developed using publicly available software that is available via the following links: 
 
R v4.4.2  
Genomic SEM v0.0.5 (including our new QSNP extension)  
METAL v released on 2020-05-05 
FUMA v1.5.2 
SMR v1.3.2 
METASCAPE v3.5.20250101 
lavaan R package v0.6-19  
MungeSumstats R package v1.14.1 
MAGMA v1.08 
stats R package v4.4.2   
SBayesR v2.0  
 
The specific custom code for the analyses in this study are publicly available at https://github.com/IsyFoote/Frailty-Multivariate-GWAS and 
Zenodo 10.5281/zenodo.15654248. The code we used to create the latent growth curve models of cognitive ability and cognitive change in 
LBC1936 can be found here. 
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The latent frailty factor and pneumonia GWAS summary statistics that were created in this study are available on GWAS Catalog (accession codes GCST90624046-
GCST90624053). The frailty PRS created in this study are available on PGS Catalog (IDs PGS005221-PGS005229). Individual-level data that was used for our polygenic 
risk score analyses can be accessed upon request from the relevant cohorts: LBC1936, PISA and ELSA. 
 
The univariate GWAS summary statistics that we used for our frailty model and the external health outcomes are available via the citations outlined in 
Supplementary Tables 1 and 4, respectively. The LD scores and weights, HapMap3 SNPs and 1000 Genomes reference file for Genomic SEM are available to 
download here (https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v) and the functional annotations for conducting Stratified Genomic SEM are 
available to download here (https://github.com/GenomicSEM/GenomicSEM/wiki/6.-Stratified-Genomic-SEM). The datasets used for positional, eQTL and chromatin 
interaction mapping and MAGMA analyses are available on the online platform FUMA (https://fuma.ctglab.nl), and the pre-processed eTL, sQTL and mQTL data for 
conducting SMR are available for download here (https://yanglab.westlake.edu.cn/software/smr/#DataResource). The databases used for pathway analysis are 
available via the online platform METASCAPE (https://metascape.org/gp/index.html#/main/step1).       

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We use the term sex in our current study, which is determined by the composition of sex chromosomes in the individuals 
within our sample. We did this for everyone by confirming that their sex according to their genetic data matched their self-
reported sex (i.e. males should have chromosome composition of X/Y and females should have X/X composition). This was 
done based on heterozygosity on the X chromosome and whether the individual displayed genotyping on the Y chromosome. 
Sample mismatches were re-classified in line with their genetically determined biological sex where possible, or were 
removed from the analysis. In addition, participants that displayed chromosomal aneuploidy (e.g. X/O females or X/X/Y 
males) were excluded from our analyses.  
None of our analyses were stratified by sex but we provide the ratio of male and female individuals within our cohort 
samples that we used for polygenic risk prediction in the Supplementary Methods. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

wing to the restrictions of the methods used in our study and the lack of data available currently for analysis of non-European 
samples, we restricted our current analysis to samples that included individuals that were predominantly of European 
ancestry (confirmed using methods such a principal component analysis). 

Population characteristics Population characteristics for the 30 included GWAS studies in our frailty model are outlined in the main text, Supplementary 
Note and Supplementary Tables 1 and 4. They were measured within the European ancestry samples collected by consortia, 
biobank studies and cohort studies. For the individual-level analyses in the 3 external cohorts the population characteristics 
are outlined in detail in the Supplementary Note. For LBC1936 wave 1 the mean age was 69.90 (SD= 0.83); for ELSA the mean 
age was 68.45 (SD= 10.13); and for PISA the mean age was 60.34 (SD= 6.98). 

Recruitment We did not complete any new recruitment for the current study. 

Ethics oversight Ethics for LBC1936 was approved by the Multi-Centre Research Ethics Committee for Scotland (Wave 1: MREC/01/0/56), the 
Lothian Research Ethics Committee (Wave 1: LREC/2003/2/29), and the Scotland A Research Ethics Committee (Waves 2, 3, 4 
and 5: 07 /MRE00/58) and all methods were performed in accordance with the relevant guidelines and regulations. Informed 
Written Consent was obtained from participants at each of the waves. Ethical approval for ELSA was gained via the South 
Central - Berkshire Research Ethics Committee (21/SC/0030, 22nd March 2021) and all methods were performed in 
accordance with the relevant guidelines and regulations. The ELSA genetics team approved a request for this study to utilize 
raw genotypes and provided linked genome-wide association study (GWAS) data to the phenotypic data curated at the 
Advanced Care Research Centre, University of Edinburgh. The PISA study protocol was approved by the Human Research 
Ethics Committee (HREC) at QIMR Berghofer Medical Research Institute. The remaining data used in this study represents 
publicly available, anonymised, summary-level data that did not require specific ethical approval to be used in our analyses. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No power calculations were calculated but we only included phenotypes in our main analysis that demonstrated a strong heritable 
component (SNP-based h2 Z statistic> 4), which indicates that the phenotype has enough power to be reliably included within Genomic SEM 
analyses. Furthermore, we only used GWAS summary statistics that had sample sizes >10,000 individuals. Sample sizes of the GWAS summary 
statistics that formed our latent model are detailed in our Supplementary Tables 1 and 4, but constitute the largest, publicly available 
univariate GWAS sample for each phenotype to maximise power in our multivariate analysis. These strategies ensured that we followed the 
best practice guidance on performing well-powered Genomic SEM analyses since each univariate trait had already either had power 
calculations performed by the relevant consortium or was given high confidence status by the PanUKB team in their QC analyses (as described 
here: https://pan.ukbb.broadinstitute.org/docs/per-phenotype-files).  The expected sample size for each of the latent factor GWAS 
phenotypes that we estimated was calculated using standard methods and is outlined in the methods section and in the results of our paper. 
Sample sizes, including descriptive of age and sex, for the 3 external cohort datasets that we used for polygenic risk score estimation (LBC 
1936, ELSA and PISA) are outlined in detail in our Supplementary Methods and in our results sections. For LBC 1936 the sample size was 1,005 
individuals, for ELSA it was 7,181 individuals and for PISA it was 3,265 individuals.

Data exclusions Owing to a reliance on linkage disequilibrium information for the methods used here, we excluded participants of non-European ancestry as 
we did not have sufficient data available to conduct our analyses reliably in non-European ancestry populations. We also excluded genotyped 
and imputed SNPs with a minor allele frequency <1% and an imputation score <0.9 (for LDSC analyses) and <0.6 for our multivariate GWAS 
analysis, in line with the standard recommendations for these methods. 

Replication Since there were not separate samples large enough to fully replicate all 30 GWAS traits in our main analysis, we conducted exploratory factor 
analysis in the odd autosomes and confirmatory factor analysis in the even autosomes to minimise overfitting our model. We performed our 
polygenic risk score analyses in 3 external datasets that were not overlapping with our GWAS summary statistics from which the risk scores 
were estimated. 

Randomization Not relevant to this study as it was not a clinical trial study and all data was from observational studies.

Blinding Blinding was not relevant to the current study because the study utilised summary data and observational analytical methods that did not 
require the researcher to provide an intervention to participants at any point. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
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Novel plant genotypes N/A
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Authentication N/A
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All studies must disclose on these points even when the disclosure is negative.

Sample size No power calculations were calculated but we only included phenotypes in our main analysis that demonstrated a strong heritable 
component (SNP-based h2 Z statistic> 4), which indicates that the phenotype has enough power to be reliably included within Genomic SEM 
analyses. Furthermore, we only used GWAS summary statistics that had sample sizes >10,000 individuals. Sample sizes of the GWAS summary 
statistics that formed our latent model are detailed in our Supplementary Tables 1 and 4, but constitute the largest, publicly available 
univariate GWAS sample for each phenotype to maximise power in our multivariate analysis. These strategies ensured that we followed the 
best practice guidance on performing well-powered Genomic SEM analyses since each univariate trait had already either had power 
calculations performed by the relevant consortium or was given high confidence status by the PanUKB team in their QC analyses (as described 
here: https://pan.ukbb.broadinstitute.org/docs/per-phenotype-files).  The expected sample size for each of the latent factor GWAS 
phenotypes that we estimated was calculated using standard methods and is outlined in the methods section and in the results of our paper. 
Sample sizes, including descriptive of age and sex, for the 3 external cohort datasets that we used for polygenic risk score estimation (LBC 
1936, ELSA and PISA) are outlined in detail in our Supplementary Methods and in our results sections. For LBC 1936 the sample size was 1,005 
individuals, for ELSA it was 7,181 individuals and for PISA it was 3,265 individuals.

Data exclusions Owing to a reliance on linkage disequilibrium information for the methods used here, we excluded participants of non-European ancestry as 
we did not have sufficient data available to conduct our analyses reliably in non-European ancestry populations. We also excluded genotyped 
and imputed SNPs with a minor allele frequency <1% and an imputation score <0.9 (for LDSC analyses) and <0.6 for our multivariate GWAS 
analysis, in line with the standard recommendations for these methods. 

Replication Since there were not separate samples large enough to fully replicate all 30 GWAS traits in our main analysis, we conducted exploratory factor 
analysis in the odd autosomes and confirmatory factor analysis in the even autosomes to minimise overfitting our model. We performed our 
polygenic risk score analyses in 3 external datasets that were not overlapping with our GWAS summary statistics from which the risk scores 
were estimated. 

Randomization Not relevant to this study as it was not a clinical trial study and all data was from observational studies.

Blinding Blinding was not relevant to the current study because the study utilised summary data and observational analytical methods that did not 
require the researcher to provide an intervention to participants at any point. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants


	Uncovering the multivariate genetic architecture of frailty with genomic structural equation modeling

	Results

	Multivariate genetic architecture of frailty

	Genetic overlap between frailty and aging-related outcomes

	Multivariate GWAS identifies 408 risk loci for frailty

	Frailty-associated gene expression and epigenetic changes

	Gene prioritization and pathway analysis

	Polygenic risk scores predict frailty in external cohorts


	Discussion

	Online content

	Fig. 1 Path diagram of the standardized results for our bifactor model of frailty.
	Fig. 2 Heatmap of the genetic correlations between aging-related health outcomes and each of the latent factors from the frailty bifactor model.
	Fig. 3 Manhattan plots of the shared genetic signal for each of the latent factors in the frailty model.
	Fig. 4 Results from the MAGMA gene property analysis and stratified genomic SEM.
	Fig. 5 Overview of the gene prioritization pipeline and results from the pathway enrichment analysis for the residual frailty factors.
	Fig. 6 Results from the PRS analyses of the latent frailty factors conducted in the LBC1936 (n = 1,005), PISA (n = 3,265) and ELSA (n = 7,181) cohorts.




